NetMon a tool for multi-user network service monitoring and fault localization

Pavle Vuletić, (University of Belgrade)

5th SIG_PMV 2018, Manchester UK
• Virtualized infrastructures – multiple users traffic is multiplexed over the same physical links
• How to estimate the quality of service/experience of each user separately?
• Monitoring physical infrastructure is not sufficient and using separate tools for each virtual network is not scalable
• Various network technologies are used for multiplexing users traffic (different VPN flavours, L2, L3, e-circuits, etc.). Goal: create a single, scalable, vendor independent monitoring platform capable to monitor all these technologies
• Automated monitoring upon network service installation integrated with the provisioning
• Fault localization – where is performance degradation on the end-to-end path?
NetMon approach

• NetMon provides:
 • real-time feedback to network operations personnel or users,
 • determines whether services are performing to spec (SLA verification),
 • if not, it initiates an automated analysis to localise the fault, and notify the appropriate agent to take corrective action.

• Key performance indicators:
 • MEF (10.3) and ITU defined metrics: delay, jitter, loss, availability, etc.

• Getting the metrics – hybrid approach (RFC 7799).

• Key components:
 • Monitoring Controller
 • Multihomed Monitoring Agents
 • Monitoring Result Repository and portal
 • (Capturers and Correlators for fault localization)

• 3 modes of operation: active – end-to-end, active+fault localization, full traffic analysis
Workflow integrated with the rest of the OSS/BSS Architecture (Mode 1)

SPA
- Other OSS/BSS
- Service inventory

NetMon
- Monitoring controller
- Result repository/portal

Service 1
Service 2
Workflow integrated with the rest of the OSS/BSS Architecture (Mode 1)
Workflow integrated with the rest of the OSS/BSS Architecture (Mode 1)

SPA
- Other OSS/BSS
- Service inventory

NetMon
- Monitoring controller
- Result repository/portal

Service 1
Service 2
Workflow integrated with the rest of the OSS/BSS Architecture (Mode 1)
Workflow integrated with the rest of the OSS/BSS Architecture (Mode 1)
Workflow integrated with the rest of the OSS/BSS Architecture (Mode 1)
Workflow integrated with the rest of the OSS/BSS Architecture (Mode 1)
Compatibility and technology

• TMF Service Test API
• TMF Service inventory API
• TMF Trouble ticket API
• Monitoring @100G

• Integrate proven solutions:
 • Active probing - modified
 • Component configuration
 • Inter-component communication
 • Result database
 • Result display
Network setup for the demo
• Between MX routers (PODs): CCC L2VPN
• Between VMX: native IP, L2VPN, L3VPN
• Total on the wire:
• 100 – Multipoint L3VPN
• (200 – p2p L3VPN)
• 300 – Multipoint L2VPN
• 400 – point to point L2 VPN
• Native IP communication between the CPE/MA devices
• In the example, we turn on and off VPN 200 monitoring and change the delay on the selected network path in the network
Initiating Monitoring Session
Monitoring devices

Service Tests

Specifications

Devices

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA1</td>
<td>London</td>
<td>GTS5</td>
<td>MA1 in GTS5</td>
</tr>
<tr>
<td>MA2</td>
<td>London</td>
<td>GTS5</td>
<td>MA2 in GTS5</td>
</tr>
<tr>
<td>MA3</td>
<td>Prague</td>
<td>GTS5</td>
<td>MA3 in GTS5</td>
</tr>
<tr>
<td>MA4</td>
<td>Prague</td>
<td>GTS5</td>
<td>MA4 in GTS5</td>
</tr>
</tbody>
</table>
Device information

Basic Information
- **Name:** MA1
- **Location:** London
- **Domain:** GTS5
- **Description:** MA1 in GTS5
- **ID:** 08c05d80-416f-11e8-a40b-8d43421f649a
- **Href:** http://172.16.0.74:8081/control/device/08c05d80-416f-11e8-a40b-8d43421f649a

Management interface
- **Interface name:** eth0
- **IP address:** 172.16.0.138

Operational interface
- **Interface name:** eth1
- **Role:** Measurement Agent (MA)
- **Attachment element:** CPE1
- **Attachment port:** 1
Test specifications

Service Test Specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS-Inproduction (delay, jitter, loss)</td>
<td>Inproduction performance verification (delay, jitter, loss)</td>
</tr>
<tr>
<td>STS-Inproduction (delay, loss)</td>
<td>Inproduction performance verification (delay, loss)</td>
</tr>
<tr>
<td>STS-Preproduction</td>
<td>Preproduction test based on ping</td>
</tr>
</tbody>
</table>
Measure definition 1

- **Name:** E2D Delay
- **Metric href:** e2e-delay
- **Metric name:** e2e delay
- **Metric description:** end to end delay
- **Unit of measure:** ms
- **Value type:**
- **Capture method:** inproduction-test-mode1
- **Capture frequency:** 60s
- **Threshold rules:** [Show](#)

Measure definition 2

- **Name:** E2E Jitter
- **Metric href:** e2e-jitter
- **Metric name:** e2e jitter
- **Metric description:** end to end jitter
- **Unit of measure:** ms
- **Value type:**
- **Capture method:** inproduction-test-mode1
- **Capture frequency:** 60s
- **Threshold rules:** [Show](#)

Measure definition 3

- **Name:** E2E Loss
- **Metric href:** e2e-loss
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Service</th>
<th>Status</th>
<th>Start Time</th>
<th>End Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inproduction test (v100)</td>
<td>Inroduction test on v100</td>
<td>v100</td>
<td>In Progress</td>
<td>2018-06-10T20:20:42.486Z</td>
<td>2018-06-10T20:51:52.874Z</td>
</tr>
<tr>
<td>Inproduction test (v100)</td>
<td>Inroduction test on v100</td>
<td>v100</td>
<td>Failed</td>
<td>2018-06-10T20:19:45.084Z</td>
<td>2018-06-10T20:21:28.668Z</td>
</tr>
<tr>
<td>Inproduction test (v100)</td>
<td>Inroduction test on v100</td>
<td>v100</td>
<td>Failed</td>
<td>2018-06-10T20:16:20:155Z</td>
<td>2018-06-10T20:18:03:941Z</td>
</tr>
</tbody>
</table>
Create new Service Test

Properties

- **Name:** v200 - TNC
- **Description:** v200 test during the TNC'18

Service Test Specification

- **Name:** STS-Inproduction (delay, jitter, loss)
- **Href:** http://172.16.0.74:8081/serviceTestManagement/serviceTestSpecification/8c3caf5b-4170-11e8-c

Related Service

- **Name:** v200
- **Href:** http://172.16.0.74:8081/control/service/8a86b3e0-4a21-11e8-9762-1bd5819e338c
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Service</th>
<th>Status</th>
<th>▼Start Time</th>
<th>End Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>v200 - TNC</td>
<td>v200 test during the TNC’18</td>
<td>v200</td>
<td>In Progress</td>
<td>2018-06-11T11:53:03.530Z</td>
<td></td>
</tr>
<tr>
<td>Inproduction test (v300)</td>
<td>Inproduction test on v300</td>
<td>v300</td>
<td>In Progress</td>
<td>2018-06-11T07:33:27.807Z</td>
<td></td>
</tr>
<tr>
<td>Inproduction test (v100)</td>
<td>Inproduction test on v100</td>
<td>v100</td>
<td>In Progress</td>
<td>2018-06-10T20:20:42.486Z</td>
<td></td>
</tr>
<tr>
<td>Inproduction test (v100)</td>
<td>Inproduction test on v100</td>
<td>v100</td>
<td>Failed</td>
<td>2018-06-10T20:16:20.155Z</td>
<td>2018-06-10T20:18:03.941Z</td>
</tr>
<tr>
<td>Service ID 53</td>
<td>LondonCPE1</td>
<td>LondonCPE2</td>
<td>PragueCPE3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LondonCPE1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| LondonCPE2 | | Average Delay - 2.373
 | | Average Jitter - 1.075 |
| | | | |
| PragueCPE3 | | Average Delay - 62.886
<pre><code> | | Average Jitter - 2.255 |
</code></pre>
<p>| | | | |
| Service ID 56 | LondonCPE2 | PragueCPE3 | |
| | | | |
| LondonCPE2 | | | |
| | | | |
| PragueCPE3 | | | |</p>
<table>
<thead>
<tr>
<th>Service ID</th>
<th>Location</th>
<th>Average Delay</th>
<th>Average Jitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>London CPE 1</td>
<td>2.371</td>
<td>1.074</td>
</tr>
<tr>
<td>56</td>
<td>London CPE 2</td>
<td>3.159</td>
<td>1.115</td>
</tr>
<tr>
<td>53</td>
<td>Prague CPE 3</td>
<td>62.883</td>
<td>2.255</td>
</tr>
<tr>
<td>56</td>
<td>London CPE 2</td>
<td>63.484</td>
<td>2.206</td>
</tr>
<tr>
<td>53</td>
<td>Prague CPE 3</td>
<td>62.725</td>
<td>2.155</td>
</tr>
<tr>
<td>56</td>
<td>Prague CPE 3</td>
<td>63.3</td>
<td>3.4</td>
</tr>
<tr>
<td>53</td>
<td>Prague CPE 3</td>
<td>62.5</td>
<td>1.6</td>
</tr>
</tbody>
</table>
End-to-end Monitoring
Fault localization
Fault localization (Mode 2 and 3)

- It is necessary to get the information from the intermediate points in the network
- Similar approaches:
 - Single technology (CFM) or vendor/proprietary solutions
Fault localization (Mode 2 and 3)

- It is necessary to get the information from the intermediate points in the network
- Similar approaches:
 - Single technology (CFM) or vendor/proprietary solutions
 - Concept of the monitoring zone

Taken from: Ericsson Diamond: https://pdfs.semanticscholar.org/0119/099638d68a0836d55d7de0dfc00891571876.pdf
Fault localization (Mode 2 and 3)

• It is necessary to get the information from the intermediate points in the network

• Similar approaches:
 • Single technology (CFM) or vendor/proprietary solutions
 • Concept of the monitoring zone
 • Flow Broker
Fault localization (Mode 2 and 3)

- It is necessary to get the information from the intermediate points in the network
- Similar approaches:
 - Single technology (CFM) or vendor/proprietary solutions
 - Concept of the monitoring zone
 - Flow Broker
 - IETF RFC 8321 (Jan 2018) – Alternate marking (requires changes in the network elements)
Fault localization (Mode 2 and 3)

- It is necessary to get the information from the intermediate points in the network
- Similar approaches:
 - Single technology (CFM) or vendor/proprietary solutions
 - Concept of the monitoring zone
 - Flow Broker
 - IETF RFC 8321 (Jan 2018) – Alternate marking (requires changes in the network elements)
 - IETF RFC 8372 (May 2018) – MPLS Flow identification
Fault localization (Mode 2 and 3)

• It is necessary to get the information from the intermediate points in the network

• Similar approaches:
 • Single technology (CFM) or vendor/proprietary solutions
 • Concept of the monitoring zone
 • Flow Broker
 • IETF RFC 8321 (Jan 2018) – Alternate marking (requires changes in the network elements)
 • IETF RFC 8372 (May 2018) – MPLS Flow identification

• NetMon approach
 • Specially crafted OWAMP packets (serviceID)
 • Captured at various points in the network
 • Matched based on the packet hash and service ID
 • Packet digest sent to the Correlator and from there to the Result repository

```
owping -s 30 -x 04000064AC100016 192.168.100.2:8765
```
Can NetMon be merged with perfSONAR?

• NetMon uses active monitoring approach (but no BW tests)
• NetMon uses the same key monitoring tool (owamp/twamp)
• perfSONAR recently adopted the work in netnamespaces (multihoming – multi-tenant operation)
• perfSONAR has well organized development process and a long history of successful deployments
• Key gaps:
 • Service awareness (use case: Service X operating between CPE A, B, C over VLANs 100, 200, 300 on interfaces eth2, eth1, eth2 respectively. KPI for Service X: delay, jitter and loss. SLA specification, RAG alarm thresholds, signaling towards other components)
 • Integration with the other OSS/BSS components (extracting the required data from other inventories, receiving monitoring orders, sending alarms)
 • Fault localization
 • perfSONAR plans
Thank you
Any Questions?