[image: image7.jpg]GEﬁ?VTZ



[image: image7.jpg]

[image: image8.jpg]Information Society




DS3.3.2 [image: image8.jpg]

02.08.05
Deliverable GN2 DS3.3.2:
Research Network User's Guide to Performance
Deliverable DS3.3.2
	Contractual Date:
	<Insert date>

	Actual Date:
	02/08/05

	Contract Number:
	511082

	Instrument type:
	Integrated Infrastructure Initiative (I3)

	Activity:
	SA3

	Work Item:
	WI-3

	Nature of Deliverable:
	O 

	Dissemination Level
	Public 

	Lead Partner
	Switch

	Document Code
	<GN2- DS3.3.2>

	Authors:
	Francois Xavier Andreu (RENATER), Alex Gall (SWITCH), Ann Harding (HEAnet), Simon Leinen (SWITCH), Colm MacCárthaigh (HEAnet), Orla McGann (HEAnet), Simon Muyal (RENATER), Hank Nussbacher (IUCC), Toby Rodwell (DANTE), Ulrich Schmid (SWITCH), Chris Welti (SWITCH)


Abstract
This paper is a resource to provide information on network performance and service quality to researchers and end-users that have networking requirements for their work, but are not necessarily networking specialists. It covers basic metrics to understand network performance, techniques for troubleshooting performance issues and gives an overview of network protocol issues involved on the end-to-end path. It also provides advice on how end users can best take advantage of new networks and QoS services by tuning their own systems and applications to maximise performance and illustrates cases where this has been effective.
Document Revision History
<This page to be deleted before submission to the EC>
	Version 
	Date
	Description of change
	Person

	1
	24-06-05
	First draft issued
	Ann Harding

	2
	09-07-05
	Second draft with corrections
	Orla McGann

	3
	28-07-05
	Third draft with extra content
	Ann Harding

	
	
	Review 
	

	
	
	
	

	
	
	Approved
	


	REVIEW
	Main reviewer
	N. Surname

	Summary of suggested changes
	

	Recommendation
	1) Major revision
 
	 FORMCHECKBOX 

	2) Minor revision

	 FORMCHECKBOX 


	Re-submitted for review - if 1)
	DD/MM/YY

	Final comments
	

	Approved
:
	DD/MM/YY


Table of Contents
70
Executive Summary


70.1
Goals and target readership


70.2
Related work


81
Performance Basics


81.1
User-perceived performance


81.1.1
Responsiveness


81.1.2
Capacity and throughput


81.1.3
Reliability


91.2
Network performance metrics


91.2.1
One-Way Delay (OWD)


101.2.2
Round-Trip Time (RTT)


111.2.3
Delay Variation (Jitter)


111.2.4
Packet Loss


121.2.5
Packet Reordering


121.2.6
Maximum Transmission Unit (MTU)


131.2.7
Bandwidth Delay Product (BDP)


141.3
Translating Performance Metrics


152
First steps at investigating performance problems


152.1
Problem isolation strategies


152.1.1
Defining the problem


162.1.2
Gathering facts


162.1.3
Considering possibilities


162.1.4
Reporting the problem


172.2
Measurement tools


172.2.1
Latency/Delay Measurement Tools


242.2.2
Bandwidth Utilisation Measurement Tools


262.2.3
Path Probe Tools


282.2.4
Network Simulation and Benchmarking Tools


292.2.5
Traffic Analysis Tools


302.3
Common problems


302.3.1
Duplex Mismatch


313
TCP Performance Primer


313.1
Window-based transmission


323.2
Rate control


323.2.1
Slow Start


333.2.2
Congestion Avoidance


333.2.3
Fast Retransmit


333.2.4
Fast Recovery


333.3
TCP Performance enhancements


343.3.1
Window scaling & timestamps


353.3.2
SACK


363.3.3
Explicit Congestion Notification


373.4
High-performance TCP variations


373.4.1
HSTCP, H-TCP, BIC, FAST etc.


394
Hardware considerations


394.1
Network adapters


394.1.1
TCP Offload Engines (TOEs)


394.1.2
Large Send Offload (LSO)


404.1.3
Interrupt Coalescence


404.1.4
Checksum Offload


404.2
File systems and disks


414.2.1
Benchmarking


414.2.2
Tuning


435
Operating system considerations


435.1
Out-of-the box system settings and tuning


435.2
Operating-specific tuning tips and tools


435.2.1
Microsoft Windows


445.2.2
Linux


455.2.3
BSD Variants


465.2.4
MAC OS X


465.2.5
Solaris


476
Application and protocol considerations


476.1
Designing tolerant applications


476.1.1
"Chatty" Protocols


496.1.2
Performance-friendly I/O interfaces


506.2
Choosing applications


516.2.1
Protocols


526.2.2
Applications


547
Performance Case Studies


547.1
Transatlantic File Transfer Performance Troubleshooting


547.1.1
Problem Statement


547.1.2
Results Summary


547.1.3
Improving Performance


557.2
High-Performance Web Server For Large Audiences


557.2.1
Apache


567.2.2
File System


577.2.3
Kernel


597.3
Internet2 Land Speed Record Hosts


597.3.1
SUNET/SPRINT


607.3.2
CALTECH/CERN/CENIC


607.3.3
University of Tokyo/WIDE/Chelsio


618
Conclusions and further work


629
References


6610
Acronyms




Table of Figures
Error! No table of figures entries found.
0 Executive Summary
0.1 Goals and target readership
The aim of this document is to provide information to researchers and end-users that have networking requirements for their work, but are not necessarily networking specialists. It gives an overview of the issues that may be faced when trying to achieve the best network performance and Quality of Service possible. It will also provide tips and guidelines for the end-users themselves, in order to understand network performance metrics and to get the most from the network they are working on.
Due to constant research and development, new advances in this area occur frequently. This is therefore a ‘living’ document, based on information gathered in the PERT (Performance Enhancement and Response Team) Knowledgebase as part of Géant2 Service Activity PACE (Performance and Allocated Capacity for End-users) and will be subject to revision over the course of the Service Activity.
0.2 Related work
Delivery of high-quality end-to-end network performance is a co-operative effort. In addition to this Research Network User's Guide to Performance, DS3.3.2 Part 2, Best Practice Guide for Campus Networks provides advice for campus-sized networking organisations on maximising performance and monitoring of networking devices. These two guides, in conjunction with GN2 Deliverable D.S.3.9.1: Policy for allocation of Premium IP and the flexible hybrid network services offered by Géant2, facilitate delivery of high-quality end-to-end performance
.

1 Performance Basics
1.1 User-perceived performance
User-perceived performance of network applications is made up of a number of mainly qualitative metrics, some of which are in conflict with each other. In the case of some applications, a single metric will outweigh the others, such as responsiveness from video services or throughput for bulk transfer applications. More commonly, a combination of factors usually determines the experience of network performance for the end-user.
1.1.1 Responsiveness
One of the most important user experiences in networking applications is the perception of responsiveness. If end-users feel that an application is slow, it is often the case that it is slow to respond to them, rather than being directly related to network speed.  This is a particular issue for real-time applications such as audio/video conferencing systems and must be prioritised in applications such as remote medical services and off-campus teaching facilities. It can be difficult to quantitatively define an acceptable figure for response times as the requirements may vary from application to application.
1.1.2 Capacity and throughput
An important user metric, in the case of network applications that rely on bulk transfer, is capacity. In the past, many applications were hindered by the lack of available high-bandwidth connections. A quantitative measurement term for this experience is “throughput”; defined as the rate at which a computer or network sends or receives data. For example: a truck full of DVDs has a better throughput than a user trying to download a film over a home broadband connection, as it can carry far more data.
1.1.3 Reliability
For networked applications to be viable replacements for the previous methods of bulk data transfer, and to facilitate new high-quality highly responsive applications, network performance must be reliable. This includes not only planning for resilience and avoiding faults and outages, but also having predictable known performance metrics available for the effective design and use of these new applications. These two working definitions of reliability can conflict, as resilience techniques used to ensure availability could result in different performance metrics across different network paths.
1.2 Network performance metrics
There are many metrics that are commonly used to characterize the performance of networks and constituent parts of networks. We present the most important of these metrics, explaining what influences them, how they can be measured, how they influence end-to-end performance, and what can be done to improve them. 
Traditionally, the metric of focus in networking has been bandwidth. As more and more parts of the Internet have their capacity upgraded, bandwidth is often no longer the main problem. 
A framework for network performance metrics has been defined by the IETF's IP Performance Metrics (IPPM) Working Group in RFC 2330. The group also developed definitions for several specific performance metrics detailed in this section.
1.2.1 One-Way Delay (OWD)
One-way delay is the time it takes for a packet to reach its destination. It is considered a property of network links or paths. RFC 2679 contains the definition of the one-way delay metric of the IETF's IPPM Working Group. Network-induced latency often has noticeable impact on performance. While this can be measured in one-way delay, when studying end-to-end performance, it is usually more interesting to look at metrics that are derived from one-way delay such as Round Trip Time (RTT) and Delay Variation (DV). 
One-way delay along a network path can be broken down into per-hop one-way delays, and these in turn into per-link and per-node delay components.
The per-link component of one-way delay consists of two sub-components: propagation delay and serialization delay.  The per-node component of one-way delay also consists of two sub-components: forwarding delay and queuing delay.
1.2.1.1 Propagation Delay
Propagation delay is the length of time taken for signals to move from the transmitting to the receiving end of a link. On simple links, this is the product of the link's physical length and the characteristic propagation speed. For example: if the link is a copper wire, propagation speed is around 3/4 the speed of light in a vacuum. For fibre-optic links, a much more reliable and common medium in wide-area networks (WANs) today, the signal propagation speed is slightly lower; about 2/3 of the speed of light.
On high-speed wide-area network (WAN) paths, delay is usually dominated by propagation times; i.e. the time required for transmission of the signal on a link. Therefore, the physical routing of network links on the campus and across the wide area network plays an important role in network performance, as well as the topology of the network and the selection of routing metrics.
1.2.1.2 Serialization Delay
Serialization delay is the time it takes for a packet to be separated into sequential link transmission units (typically bits). It is obtained by dividing the packet size (in bits) by the capacity of the link (in bits per second). Nowadays, as links increasingly have a higher bit rate, serialization delay is less relevant.
1.2.1.3 Forwarding Delay
Forwarding delay is the time it takes for the node to process a packet and send it to its destination. The processing of the packet involves reading the forwarding-relevant information (typically the destination address and other headers) from the packet and computing the forwarding decision (based on routing tables and other information), before actually forwarding the packet towards the destination. This may involve copying the packet to a different interface inside the node, rewriting parts of it such as the IP TTL and any media-specific headers and any other processing such as fragmentation, accounting, or checking access control lists.
1.2.1.4 Queuing Delay
Queuing delay is defined as the time a packet has to spend inside a node such as a router while waiting for availability of the output link. It depends on the amount of traffic competing to send packets towards the output link and on the priorities of the packet and those of the competing traffic. There can be causes for queuing delay other than contention on the outgoing link, such as contention on the node device’s backplane.
1.2.2 Round-Trip Time (RTT)
Round-trip time (RTT) is the total time taken for a packet sent by a node A to reach a destination B and then for a response to sent back by B to reach A. In other words, the round-trip time is the sum of the one-way delays from A to B and from B to A, and of the time it takes B to formulate the response to the original packet.
Large RTT values can cause problems for Transmission Control Protocol (TCP) and other window-based transport protocols.  The round-trip time influences the achievable throughput, as there can only be a window's worth of unacknowledged data in the network. Section 3 explains the operation of TCP windows in more detail.
For interactive applications such as conversational audio/video, instrument control, or interactive games, the RTT represents a lower bound on response time, and thus impacts on perceived responsiveness directly.
1.2.3 Delay Variation (Jitter)
Delay variation or jitter is a metric that describes the level of disturbance of packet arrival times with respect to an ideal pattern; typically the order in which the packets were sent. Such disturbances can be caused by competing traffic (i.e. queuing), or by contention on processing resources in the network.
RFC 3393 defines an IP Delay Variation Metric (IPDV). This particular metric only compares the delays experienced by packets of equal size, on the grounds that delay is naturally dependent on packet size, because of serialization delay.
Delay variation is related to Packet Reordering. However, the RFC 3393 IPDV of a network can be arbitrarily low, even zero, even though that network reorders packets, because the IPDV metric only compares delays of equal-sized packets.
1.2.4 Packet Loss
Packet loss is determined as the probability of a packet being lost in transit from a source to a destination. A One-way Packet Loss Metric for IPPM is defined in RFC 2680. RFC 3357 contains One-way Loss Pattern Sample Metrics.
Bulk data transfers may require reliable transmission. In this situation, if any packets are lost, they must be retransmitted, reducing performance. In addition, congestion-sensitive protocols such as standard TCP assume that packet loss is due to congestion, and respond by reducing their transmission rate accordingly. 
For real-time applications such as conversational audio/video, it usually does not make sense to retransmit lost packets as the retransmitted copy would arrive too late (see Delay Variation). The result of packet loss is usually degradation in sound or image quality. Some modern audio/video codecs provide a level of robustness to loss, so that the effect of occasional lost packets is benign. However, some of the most effective image compression methods are very sensitive to loss, in particular those that use "anchor frames", and represent the intermediate frames by compressed differences to these anchor frames. When such an anchor frame is lost, many other frames won't be able to be reconstructed.
Congestion and errors are the two main reasons for packet loss.
1.2.4.1 Congestion
When the offered load exceeds the capacity of a part of the network, packets are buffered in queues. Since these buffers are also of limited capacity, congestion can lead to queue overflows, which lead to packet drops. Congestion can be caused by moderate overload condition maintained for an extended amount of time or by the sudden arrival of a very large amount of traffic (traffic burst).
1.2.4.2 Errors
Another reason for loss of packets is corruption, where parts of the packet are modified in-transit. When such corruptions happen on a link (due to noisy lines etc.), this is usually detected by a link-layer checksum at the receiving end, which then discards the packet.
1.2.5 Packet Reordering
The Internet Protocol (IP) does not guarantee that packets are delivered in the order in which they were sent. This was a deliberate design choice that distinguishes IP from protocols such as, for instance, ATM and IEEE 802.3 Ethernet.
A network which reorders packets may do so because of some kind of parallelism, either because of a choice of alternative routes (Equal Cost Multipath, ECMP), or because of internal parallelism inside switching elements such as routers. One particular kind of packet reordering concerns packets of different sizes. A larger packet takes longer to transfer over a serial link or a limited-width backplane inside a router, so larger packets may be overtaken by smaller packets in transit. This is not usually a concern for high-speed bulk transfers where the segments tend to be equal-sized but may pose problems for simpler implementations of multi-media (Audio/Video) transport.
In principle, applications that use a transport protocol such as TCP or SCTP (Stream Control Transmission Protocol) don't have to worry about packet reordering, because the transport protocol is responsible for reassembling the data stream into the original ordering. However, reordering can have a severe performance impact on some implementations of the Transmission Control Protocol. Recent TCP implementations, in particular those that support Selective Acknowledgements (SACK), can exhibit robust performance even in the face of packet reordering in the network.
The measurements here can be done differently, depending on the measurement purpose:
· Measuring reordering for a particular application can be done by capturing the application traffic (e.g. using ethereal tool), injecting the same traffic pattern via traffic generator and calculating the reordering.
· Measuring maximal reordering introduced by the network can be done by injecting relatively small amounts of traffic, shaped as a short burst of long packets immediately followed by a short burst of short packets, within the  line rate. After capture and calculation on the other end of the path, the results will reflect the worst possible packet reordering situation which may occur on a particular path.
1.2.6 Maximum Transmission Unit (MTU) 
The term MTU commonly refers to the 'protocol MTU' of an IP link and describes the maximum size of an IP packet that can be transferred over the link without fragmentation. Common MTUs include
· 1500 bytes (Ethernet, 802.11 WLAN)
·  4470 bytes (FDDI, common default for POS and serial links)
·  9000 bytes (Internet2 and GÉANT convention, limit of some Gigabit Ethernet adapters)
·  9180 bytes (ATM, SMDS)
The term 'media MTU' is used to refer to the maximum sized Layer 2 PDU (Protocol Data Unit) that a given interface can support, depending on the encapsulation used. 
1.2.6.1 Path MTU
The Path MTU is the Maximum Transfer Unit supported by a network path. It is the minimum of the MTUs of the links (segments) that make up the path. Sending regular packet sizes taking the size of the Path MTU into account reduces the risk of packet re-ordering. Larger Path MTUs generally allow for more efficient data transfers, because source and destination hosts, as well as the routing and switching devices along the network path have to process fewer packets. However, modern routers are typically designed to sustain very high packet loads (so that they can resist denial-of-service attacks) so the packet processing rates caused by high-speed transfers are not normally an issue for today's high-speed networks. In addition, modern high-speed network adapters have mechanisms such as LSO (Large Segment Offload) and Interrupt Coalescence that mean increasing MTU sizes may no longer have as visible an impact on performance.
RFC 1191 describes a method for a sender to detect the Path MTU to a given receiver. This method is widely implemented, but is not robust in today's Internet because it relies on ICMP packets sent by routers along the path. Such packets are often suppressed either at the router that should generate them (to protect its resources) or on the way back to the source, because of firewalls and other packet filters or rate limitations.
The prevalent Path MTU on the Internet is now 1500 bytes, the Ethernet MTU. There are some initiatives to support larger MTUs (Jumbo MTU) in networks, in particular on research networks. But their usability is hampered by last-mile issues, underlying vendor support and lack of robustness of RFC 1191 Path MTU Discovery. An IETF Working Group is currently defining a new mechanism for Path MTU Discovery which should solve these issues. In the interim, RFC2923 - TCP Problems with Path MTU Discovery describes difficulties encountered.
1.2.7 Bandwidth Delay Product (BDP)
The Bandwidth Delay Product (BDP) of an end-to-end path is the product of the bottleneck bandwidth and the delay of the path. Its dimension is "information", because bandwidth here expresses information per time, and delay is expressed as a time. Typically, one uses bytes as a unit, and it is often useful to think of BDP as the "memory capacity" of a path, i.e. the amount of data that fits entirely into the path between two end-systems. This relates to throughput, which is the rate at which data is sent and received.
Network paths with a large BDP are called Long Fat Networks or LFNs. In the research network environment, many end-to-end projects will transit such networks. BDP is an important parameter for the performance of window-based protocols such as TCP. 
1.3 Translating Performance Metrics
One of the difficulties in identifying and solving end-to-end performance issues and ensuring Quality of Service is the difficulty in communicating metrics between all of those involved in diagnosis and operation of the application, from the end user, across the campus network, the national research networks and the Géant2 backbone. This table outlines some parallels in performance expectations of end users and network operators.
	END USER METRIC
	NETWORK METRIC

	Responsiveness
	One-Way Delay (OWD)
Round-Trip Time (RTT)
Delay Variation (Jitter)


	Capacity and Throughput
	Maximum Transfer Unit (MTU)
Bandwidth Delay Product (BDP)


	Reliability
	Delay Variation (Jitter)
Packet Loss
Packet Reordering



End User and Network Metrics
2 First steps at investigating performance problems
2.1 Problem isolation strategies
End-user experience is the most important factor in problem isolation as the purpose of the troubleshooting is to resolve performance issues or to understand why expected performance is not achieved. Therefore the end user has a crucial role in defining, understanding and communicating problems experienced. This is all the more important in end-to-end performance situations due to the number of administrative domains involved.
2.1.1 Defining the problem
An important aspect of defining the problem is to know what the expected performance should be. If the application has been established and is suddenly experiencing performance problems, known good performance benchmarks should be available. If it is a new application and performance benchmarks have not been established, it is a good idea to do some basic benchmarking of network performance on the end-to-end path. The very simplest end-to-end test that can be done would be to use an application such as nttcp to transfer data memory-to-memory between hosts, bypassing any performance issues that disk IO, encryption or application overhead might introduce. This test is used in a Section 7 case study to identify performance bottlenecks.
It is best if these performance experiences are expressed in quantitative network metrics. Section 1.3 provides some information on mapping end-user experiences to network metrics. An initial performance observation that files are transferring ‘slowly’ could be expressed as a more formal problem statement of a data transfer rate in terms of Mb/s, compared against an expected transfer rate, expressed in the same way. Section 2.2 provides details of some tools that can help track these metrics.
2.1.2 Gathering facts
The next stage in investigating network problems is to gather facts. On an end-to-end path, it is useful to draw out the path to be taken and identify all the components involved in transporting the data. It is also important to be detailed as the ‘network’ aspect of the problem does not start at the Ethernet port on the end hosts. It includes applications, operating system protocol stacks and Network Interface Cards too. While end users may not have access to information on all the components on the path, the networking elements of the end systems are one of the most important elements and normally directly under end-user control. Once all the elements are identified, appropriate measurements for the individual components on the path can be identified and gathered. It may be useful at this stage to introduce some more comparative metrics from other systems with similar paths.
2.1.3 Considering possibilities
The aim of the activity to date has been to localise the problem and pinpoint where action needs to be taken. By comparing expected performance against actual performance and identifying metrics along the path where possible, it ought to be clear to identify the points where performance is suffering. If information is not available for all components, it should still be possible to reduce the problem domain down to likely problem areas. The next step is to consider reasons for poor performance in those areas. Useful resources for this include vendor support, OS mailing lists, FAQs, and documentation and also the hints, tips and explanations provided in this document and by the wider community contributing to the Géant2 PERT Knowledge Base.
2.1.4 Reporting the problem
It is possible that initial troubleshooting may not identify the root cause of poor performance. In that case, end users may have to report the problem to local technical teams such as campus administrators, who in turn may report the issue on to NRENs and perhaps ultimately to the Géant2 PERT service which specialises in troubleshooting end-to-end performance problems. A general guideline is that too much information is never a bad thing, as long as it is clearly identified and preferably includes a time and date. However, in order to make this escalation path as smooth as possible, the following details are highlighted as particularly important in any problem report:
2.1.4.1 Problem Description
The current system behaviour that is unsatisfactory needs to be described in terms of the network metrics detailed in Section 1.3. If these metrics have not been taken, tools detailed in Section 2.2 can be used to benchmark performance and provide measurements. If possible, these metrics should be expressed in terms of expected or previously experienced good performance. If previous performance was acceptable, the time at when the performance degraded is very helpful. Any metrics taken, such as traceroute, tcpdump or the output from any other measurement tools used should be clearly identified and forwarded with the problem report.
2.1.4.2 Network Details
Although the network may not appear to be the responsibility of the end user, certain networking information is easiest collected by end users and should be detailed at this stage. The IP address of the host under the control of the end user is particularly important. In the case of an end-to-end problem, the IP address of the remote host is also necessary and a traceroute from the local host to the remote host to show the path. If possible, a return traceroute from the remote host to the local host is desirable. If the problem is not between two specific end points this needs to be stated and a sample traceroute from the local host to a typical destination is useful.
As well as the location, any protocol information relevant to the application will be needed to effectively troubleshoot the problem. This includes the traffic type (e.g. TCP, UDP, variations of TCP), IP Protocol (e.g. IPv4, IPv6), source port, destination port and any other relevant information. If possible, a Layer Four Traceroute (see Section 2.2) using the relevant ports should be taken and attached to the problem report.
2.1.4.3 Host details
It is necessary to provide details of the hardware, operating system and specific application in use on the local system. In particular, the version of the operating system, including the particular kernel version, and application versions are important. If any alterations or enhancement to the default systems have been applied, or any extra device drivers downloaded, it is important to include this information too. If it is possible to provide the same information about the remote host, ideally this should also be included.
2.2 Measurement tools
A range of test, measurement and troubleshooting tools exist for investigating factors contributing to performance issues which have been outlined in Section 1. A wide range of tools are also listed at http://www.caida.org/tools/taxonomy/index.xml. The following tools or tool-types have been recommended by members of the Géant2 PERT service and contributors to the Géant2 Service Activity PACE (Performance and Allocated Capacity for End-users) and identified as useful for end-users. Some tools provide multiple functions and are listed under their most common use. Some tools are also more likely to be used by campus or NREN administrators.
2.2.1 Latency/Delay Measurement Tools
2.2.1.1 Ping 
Ping is the simplest of all active measurement tools. It uses ICMP echo request and ICMP echo, and shows the RTT (Round Trip Time) between the host machine and the target. It is quite common these days for ICMP traffic to be blocked, so pings timing out does not necessarily mean a host is unavailable and you may not be able to check results for the whole path. Ping can be used to actively measure packet loss by sending a set of packets from a source to a destination and comparing the number of received packets against the number of packets sent. It can also be used to measure packet reordering by sending a numbered sequence of packets, which can then be compared to the received sequence numbers sequence using one packet reordering metrics. 
Here is a sample of an IPv4 ping from a Linux system:
aharding@twilight:~$ ping www.geant2.net
PING newweb.dante.net (62.40.101.34) from 193.1.228.6 : 56(84) bytes of data.
64 bytes from www.dante.net (62.40.101.34): icmp_seq=1 ttl=58 time=14.1 ms
64 bytes from www.dante.net (62.40.101.34): icmp_seq=2 ttl=58 time=14.0 ms
64 bytes from www.dante.net (62.40.101.34): icmp_seq=3 ttl=58 time=14.0 ms
64 bytes from www.dante.net (62.40.101.34): icmp_seq=4 ttl=58 time=14.1 ms
64 bytes from www.dante.net (62.40.101.34): icmp_seq=5 ttl=58 time=14.1 ms
64 bytes from www.dante.net (62.40.101.34): icmp_seq=6 ttl=58 time=14.0 ms
64 bytes from www.dante.net (62.40.101.34): icmp_seq=7 ttl=58 time=14.2 ms
64 bytes from www.dante.net (62.40.101.34): icmp_seq=8 ttl=58 time=14.0 ms
--- newweb.dante.net ping statistics ---
8 packets transmitted, 8 received, 0% loss, time 7009ms
rtt min/avg/max/mdev = 14.057/14.113/14.261/0.146 ms
Example IPv4 ping output.
2.2.1.2 Traceroute 
The well known traceroute program was written by Van Jacobson in 1988. It sends "probe" packets with TTL values incrementing from one, and uses ICMP "Time Exceeded" messages to detect "hops" on the way to the specified destination. It also records "response" times for each hop, and displays losses and other types of failures in a compact way. It is important to note that nodes along the path may deprioritise this traffic compared to regular network traffic as a matter of policy or node engineering.
Traceroute is used to determine the route a packet takes through the Internet to reach its destination; i.e. the number of "hops" it takes. UDP packets are sent as probes to a high ephemeral port (usually in the range 33434--33525) with the Time-To-Live (TTL) field in the IP header increasing by one until the end host is reached. The originating host listens for ICMP Time Exceeded responses from each of the routers/hosts en-route. It knows that the packet's destination has been reached when it receives an ICMP Port Unreachable message; we expect a port unreachable message as no service should be listening for connections in this port range.  The output of the traceroute program shows each host that the packet passes through on the way to its destination and the RTT to each gateway en-route. Occasionally, the maximum number of hops (specified by the TTL field, which defaults to 64 hops in *NIX implementations) is exceeded before the port unreachable is received. When this happens an "!" will be printed beside the RTT in the output. 
Note that *NIX implementations of traceroute send UDP probe packets whilst MS Windows traceroute sends ICMP echo probes. *NIX implementations of traceroute can be specified to use ICMP Echo messages instead of the default UDP probes, by using the "-I" flag. Note that either or both ICMP and UDP may be blocked by firewalls, so this must be taken into account when troubleshooting.
Here is a sample of a traceroute from a Linux system:
aharding@twilight:~$ /usr/sbin/traceroute pace.geant2.net
traceroute to cemp1.switch.ch (130.59.35.130), 30 hops max, 40 byte packets
 1  hsrp-vlan10.bh.access.hea.net (193.1.228.1)  0 ms  0 ms  0 ms
 2  mantova-po2.bh.access.hea.net (193.1.196.217)  0 ms  0 ms  0 ms
 3  hyperion-gige3-3-0.bh.core.hea.net (193.1.196.121)  0 ms  0 ms  0 ms
 4  deimos-gige5-2.cwt.core.hea.net (193.1.195.86)  1 ms  1 ms  1 ms
 5  heanet.ie1.ie.geant.net (62.40.103.229)  1 ms  1 ms  1 ms
 6  ie.uk1.uk.geant.net (62.40.96.138)  14 ms  14 ms  113 ms
 7  uk.fr1.fr.geant.net (62.40.96.89)  21 ms  21 ms  21 ms
 8  fr.ch1.ch.geant.net (62.40.96.29)  84 ms  29 ms  29 ms
 9  swiCE2-P6-1.switch.ch (62.40.103.18)  30 ms  29 ms  30 ms
10  cemp1-eth1.switch.ch (130.59.35.130)  29 ms  29 ms  29 ms
Example IPv4 traceroute output.

Since its inception, traceroute has been widely used for network diagnostics as well as for research in the widest sense, and there are now many variants of the original program.
2.2.1.3 MTR (Matt's Traceroute)
Mtr combines the functionality of the traceroute and ping programs in a single network diagnostic tool. More information is available from http://www.bitwizard.nl/mtr/. It is available as a package for several Linux distributions and for FreeBSD. Here is an example of the graphical output:
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Example MTR output.
2.2.1.4 Ping Plotter
Ping Plotter combines the traceroute, ping and whois utilities to collect detailed data on a path. It runs on the Windows platform. More information is available from http://www.pingplotter.com/. Here is an example of the output:
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Example PingPlotter output.
2.2.1.5 LFT (Layer Four Traceroute)
LFT is a sort of 'traceroute' but uses TCP port 80 to pass through packet-filter based firewalls. It can be tuned to use other ports for alternative tests and is available as a package in many Linux distributions. More information is available from http://oppleman.com/lft/
Here is an example of the output:
142:/home/andreu# lft -d 80 -m 1 -M 3 -a 5 -c 20 -t 1000 -H 30 -s 53 www.cisco.com     
Tracing _________________________________.
TTL  LFT trace to www.cisco.com (198.133.219.25):80/tcp
1   129.renater.fr (193.49.159.129) 0.5ms
2   gw1-renater.renater.fr (193.49.159.249) 0.4ms
3   nri-a-g13-0-50.cssi.renater.fr (193.51.182.6) 1.0ms
4   193.51.185.1 0.6ms
5   PO11-0.pascr1.Paris.opentransit.net (193.251.241.97) 7.0ms
6   level3-1.GW.opentransit.net (193.251.240.214) 0.8ms
7   ae-0-17.mp1.Paris1.Level3.net (212.73.240.97) 1.1ms
8   so-1-0-0.bbr2.London2.Level3.net (212.187.128.42) 10.6ms
9   as-0-0.bbr1.NewYork1.Level3.net (4.68.128.106) 72.1ms
10   as-0-0.bbr1.SanJose1.Level3.net (64.159.1.133) 158.7ms
11   ge-7-0.ipcolo1.SanJose1.Level3.net (4.68.123.9) 159.2ms
12   p1-0.cisco.bbnplanet.net (4.0.26.14) 159.4ms
13   sjck-dmzbb-gw1.cisco.com (128.107.239.9) 159.0ms
14   sjck-dmzdc-gw2.cisco.com (128.107.224.77) 159.1ms
15   [target] www.cisco.com (198.133.219.25):80 159.2ms
Example LFT output.
2.2.1.6 Smokeping
Smokeping is a latency measurement tool that stores and displays latency, latency distribution and packet loss information over time in a graphical format. It is available for Unix/Linux systems. Although it is more likely to be deployed on the campus or WAN, it may be useful to run on end hosts or end systems in an equivalent network position. More information is available at http://people.ee.ethz.ch/~oetiker/webtools/smokeping/. Some examples of Smokeping graphs are below.
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Example Smokeping output 1.
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Example Smokeping output 2.
2.2.1.7 Pchar
Pchar characterizes the bandwidth, latency and loss on network links. It is available as a package on Debian GNU/Linux from http://www.kitchenlab.org/www/bmah/Software/pchar/. An example output is below.
pchar to 193.51.180.221 (193.51.180.221) using UDP/IPv4
Using raw socket input
Packet size increments from 32 to 1500 by 32
46 test(s) per repetition
32 repetition(s) per hop
 0: 193.51.183.185 (netflow-nri-a.cssi.renater.fr)
    Partial loss:      0 / 1472 (0%)
    Partial char:      rtt = 0.124246 ms, (b = 0.000206 ms/B), r2 = 0.997632
                       stddev rtt = 0.001224, stddev b = 0.000002
    Partial queueing:  avg = 0.000158 ms (765 bytes)
    Hop char:          rtt = 0.124246 ms, bw = 38783.892367 Kbps
    Hop queueing:      avg = 0.000158 ms (765 bytes)
 1: 193.51.183.186 (nri-a-g13-1-50.cssi.renater.fr)
    Partial loss:      0 / 1472 (0%)
    Partial char:      rtt = 1.087330 ms, (b = 0.000423 ms/B), r2 = 0.991169
                       stddev rtt = 0.004864, stddev b = 0.000006
    Partial queueing:  avg = 0.005093 ms (23535 bytes)
    Hop char:          rtt = 0.963084 ms, bw = 36913.554996 Kbps
    Hop queueing:      avg = 0.004935 ms (22770 bytes)
 2: 193.51.179.122 (nri-n3-a2-0-110.cssi.renater.fr)
    Partial loss:      5 / 1472 (0%)
    Partial char:      rtt = 697.145142 ms, (b = 0.032136 ms/B), r2 = 0.999991
                       stddev rtt = 0.011554, stddev b = 0.000014
    Partial queueing:  avg = 0.009681 ms (23679 bytes)
    Hop char:          rtt = 696.057813 ms, bw = 252.261443 Kbps
    Hop queueing:      avg = 0.004589 ms (144 bytes)
 3: 193.51.180.221 (caledonie-S1-0.cssi.renater.fr)
    Path length:       3 hops
    Path char:         rtt = 697.145142 ms r2 = 0.999991
    Path bottleneck:   252.261443 Kbps
    Path pipe:         21982 bytes
    Path queueing:     average = 0.009681 ms (23679 bytes)
    Start time:        Mon Jun  6 11:38:54 2005
    End time:          Mon Jun  6 12:15:28 2005
Example pchar output.
2.2.1.8 Iperf
Iperf is a tool, which measures maximum TCP bandwidth, allowing the tuning of various parameters and UDP characteristics. Iperf reports bandwidth, delay jitter, datagram loss. More information is available at http://dast.nlanr.net/Projects/Iperf/. 
2.2.1.9 BWCTL
BWCTL (Bandwidth Control) is a command line client application and a scheduling and policy daemon that wraps Iperf. More information is available at http://e2epi.internet2.edu/bwctl/. An example is available at http://e2epi.internet2.edu/pipes/pmp/pmp-switch.htm.
2.2.1.10 ip route show cache 
The Linux OS is able to apply specific conditions to specific routes, either on the fly in response to what it learns from TCP (such parameters include estimated rtt, cwnd and re-ordering) or manually. The learned info is stored in the route cache and thus can be shown with the 'ip route show cache' command. Note, this learning behaviour can actually limit TCP performance - if the last transfer was poor then the starting TCP parameters will be pessimistic. For this reason some tools, e.g. bwctl, always flush the route cache before starting a test.
2.2.1.11 One-way delay measurement nodes.
Measuring one-way-delay typically requires dedicated measurement equipment and is normally done by NRENs or campuses. These specialist devices measure one-way-delay by sending time stamped packets from A, and recording the reception times at B. The difficulty is that A and B need clocks that are synchronized to each other using techniques such as Global Positioning System (GPS)-derived time signals or the Network Time Protocol (NTP). Some devices of this kind include IPPM boxes (http://www-win.rrze.uni-erlangen.de/ippm/), RIPE TTM boxes (http://www.ttm.ripe.net/) and QoS Metrics boxes (http://pasillo.renater.fr/metrologie/get_qosmetrics_results.php)
2.2.2 Bandwidth Utilisation Measurement Tools
Network elements such as routers and sometimes end hosts contain counters for events such as link and resource utilisation, checksum errors or queue drops.  This information can be retrieved through protocols such as Simple Network Management Protocol (SNMP) and passed to a range of applications which store and display the information. Campus and NREN administrators frequently have this type of information available, though end-users may wish to set up some of these utilities on the end hosts.
2.2.2.1 MRTG
The Multi Router Traffic Grapher (MRTG) is a tool designed to monitor the traffic load on network-links. In practice, it can be used to graph any trend for which continuous data is available either via SNMP or another external program. The campus network is more likely to need to record traffic levels but other host-specific resources such as file descriptor use etc. could be graphed using MRTG. More information is available from http://people.ee.ethz.ch/~oetiker/webtools/mrtg/
An example graph based on 30 minute traffic averages over a week is below.
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Example MRTG output.
2.2.2.2 RRDTool
RRDTool is a data logging and graphing application. It is based on a Round Robin Database which stores and displays time-series data. It can be used via simple shell scripts or as a perl module and is frequently used as a back-end application for other measurement tools. Like MRTG, it is flexible in what it can measure and can be used by end users to monitor trends on the end systems or by campus administrators for network information. More information is available at http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/
2.2.2.3 Cricket
Cricket is a flexible tool developed to visualise and understand network traffic. It uses RRDTool for data storage and can monitor any host or network based time-series data such as CPU usage, collisions and queue-drops. More information is available at http://cricket.sourceforge.net/. Here is a simple example graph based on daily usage:
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Example Cricket output.
2.2.3 Path Probe Tools
There are a large and growing number of path-measurement tools derived from the well-known traceroute tool. These tools all attempt to find the route a packet will take from the source (typically where the tool is running) to a given destination, and to find out some hop-wise performance parameters along the way
2.2.3.1 tracepath
Tracepath and tracepath6 trace the path to a network host, discovering the MTU along this path. Note that, as explained at http://www.linuxmanpages.com/man8/tracepath.8.php, if the MTU changes along the path, then the route can be incorrectly declared as asymmetric.  Here is an example of the output:
142:/home/andreu# tracepath www.cisco.com
1:  142.renater.fr (193.49.159.142)                        0.707ms pmtu 1500
1:  129.renater.fr (193.49.159.129)                        0.480ms 
2:  gw1-renater.renater.fr (193.49.159.249)                0.480ms 
3:  nri-a-g13-0-50.cssi.renater.fr (193.51.182.6)          0.767ms 
4:  193.51.185.1 (193.51.185.1)                            0.763ms 
5:  PO11-0.pascr1.Paris.opentransit.net (193.251.241.97)   0.643ms 
6:  level3-1.GW.opentransit.net (193.251.240.214)          0.930ms 
7:  ae-0-17.mp1.Paris1.Level3.net (212.73.240.97)        asymm  8   1.162ms 
8:  so-1-0-0.bbr2.London2.Level3.net (212.187.128.42)    asymm 10  16.205ms 
9:  as-0-0.bbr1.NewYork1.Level3.net (4.68.128.106)       100.452ms 
10:  ae-0-0.bbr2.SanJose1.Level3.net (64.159.1.130)       180.339ms 
11:  ge-11-2.ipcolo1.SanJose1.Level3.net (4.68.123.169)   asymm 10 158.088ms 
12:  p1-0.cisco.bbnplanet.net (4.0.26.14)                 asymm 11 166.252ms 
13:  sjck-dmzbb-gw1.cisco.com (128.107.239.9)             asymm 12 159.842ms 
14:  sjck-dmzdc-gw2.cisco.com (128.107.224.77)            asymm 13 158.445ms 
15:  no reply
Example tracepath output.
2.2.3.2 traceproto
Traceproto is another traceroute variant which allows different protocols and ports to be used. It currently supports tcp, udp, and icmp traces. It comes with a wrapper script called HopWatcher, which can be used to quickly detect when a path has changed. More information is available at http://traceproto.sourceforge.net/. Here is an example of the output:
142:/home/andreu# traceproto www.cisco.com
traceproto: trace to www.cisco.com (198.133.219.25), port 80
ttl  1:  ICMP Time Exceeded from 129.renater.fr (193.49.159.129)
        6.7040 ms       0.28100 ms      0.28600 ms
ttl  2:  ICMP Time Exceeded from gw1-renater.renater.fr (193.49.159.249)
        0.16900 ms      6.0140 ms       0.25500 ms
ttl  3:  ICMP Time Exceeded from nri-a-g13-0-50.cssi.renater.fr (193.51.182.6)
        6.8280 ms       0.58200 ms      0.52100 ms
ttl  4:  ICMP Time Exceeded from 193.51.185.1 (193.51.185.1)
        6.6400 ms       7.4230 ms       6.7690 ms
ttl  5:  ICMP Time Exceeded from PO11-0.pascr1.Paris.opentransit.net (193.251.241.97)
        0.58100 ms      0.64100 ms      0.54700 ms
ttl  6:  ICMP Time Exceeded from level3-1.GW.opentransit.net (193.251.240.214)
        6.9390 ms       0.62200 ms      6.8990 ms
ttl  7:  ICMP Time Exceeded from ae-0-17.mp1.Paris1.Level3.net (212.73.240.97)
        7.0790 ms       7.0250 ms       0.79400 ms
ttl  8:  ICMP Time Exceeded from so-1-0-0.bbr2.London2.Level3.net (212.187.128.42)
        10.362 ms       10.100 ms       16.384 ms
ttl  9:  ICMP Time Exceeded from as-0-0.bbr1.NewYork1.Level3.net (4.68.128.106)
        109.93 ms       78.367 ms       80.352 ms
ttl  10:  ICMP Time Exceeded from as-0-0.bbr1.SanJose1.Level3.net (64.159.1.133)
        156.61 ms       179.35 ms
          ICMP Time Exceeded from ae-0-0.bbr2.SanJose1.Level3.net (64.159.1.130)
        148.04 ms
ttl  11:  ICMP Time Exceeded from ge-7-0.ipcolo1.SanJose1.Level3.net (4.68.123.9)
        153.59 ms
         ICMP Time Exceeded from ge-11-0.ipcolo1.SanJose1.Level3.net (4.68.123.41)
        142.50 ms
         ICMP Time Exceeded from ge-7-1.ipcolo1.SanJose1.Level3.net (4.68.123.73)
        133.66 ms
ttl  12:  ICMP Time Exceeded from p1-0.cisco.bbnplanet.net (4.0.26.14)
        150.13 ms       191.24 ms       156.89 ms
ttl  13:  ICMP Time Exceeded from sjck-dmzbb-gw1.cisco.com (128.107.239.9)
        141.47 ms       147.98 ms       158.12 ms
ttl  14:  ICMP Time Exceeded from sjck-dmzdc-gw2.cisco.com (128.107.224.77)
        188.85 ms       148.17 ms       152.99 ms
ttl  15:no response     no response     
hop :  min   /  ave   /  max   :  # packets  :  # lost
      -------------------------------------------------------
  1 : 0.28100 / 2.4237 / 6.7040 :   3 packets :   0 lost
  2 : 0.16900 / 2.1460 / 6.0140 :   3 packets :   0 lost
  3 : 0.52100 / 2.6437 / 6.8280 :   3 packets :   0 lost
  4 : 6.6400 / 6.9440 / 7.4230 :   3 packets :   0 lost
  5 : 0.54700 / 0.58967 / 0.64100 :   3 packets :   0 lost
  6 : 0.62200 / 4.8200 / 6.9390 :   3 packets :   0 lost
  7 : 0.79400 / 4.9660 / 7.0790 :   3 packets :   0 lost
  8 : 10.100 / 12.282 / 16.384 :   3 packets :   0 lost
  9 : 78.367 / 89.550 / 109.93 :   3 packets :   0 lost
 10 : 148.04 / 161.33 / 179.35 :   3 packets :   0 lost
 11 : 133.66 / 143.25 / 153.59 :   3 packets :   0 lost
 12 : 150.13 / 166.09 / 191.24 :   3 packets :   0 lost
 13 : 141.47 / 149.19 / 158.12 :   3 packets :   0 lost
 14 : 148.17 / 163.34 / 188.85 :   3 packets :   0 lost
 15 : 0.0000 / 0.0000 / 0.0000 :   0 packets :   2 lost
     ------------------------Total--------------------------
total 0.0000 / 60.540 / 191.24 :  42 packets :   2 lost
Example traceproto output.
2.2.3.3 Path MTU Discovery
Traceroute can be used to discover Path MTU sizes. However, the success of this is extremely variable as can be seen from this example:
aharding@twilight:~$ /usr/sbin/traceroute -M pace.geant2.net
traceroute to cemp1.switch.ch (130.59.35.130), 30 hops max, 32000 byte packets
 1  MTU=17914 MTU=8166 MTU=4352 MTU=2002 MTU=1492 * * *
 2  * * *
 3  * * *
 4  * * *
 5  * * *
Example traceroute MTU Discovery
An IETF Working Group (pmtud) is currently defining a new mechanism for Path MTU Discovery. Implementations are available for Linux 2.6 (http://www.psc.edu/~jheffner/projects/mtup/) and NetBSD (http://www.patheticgeek.net/~kml/mmtu/).
2.2.4 Network Simulation and Benchmarking Tools
2.2.4.1 Network Emulation
NISTnet and netem are network emulation software packages that can be run on Linux machines. In particular, they can be used to introduce delays to packets, thereby simulating a long(er) distance network. NISTnet is known to work on 2.4.x Linux kernels. For the best support for recent Gigabit Ethernet cards, an alternative recommendation is Linux kernel 2.6.10 or .11 and netem (Network emulator). 
You will need a recent iproute2 package that supports netem. More information is available at http://developer.osdl.org/shemminger/netem/index.html.  
2.2.4.2 Netperf
Netperf is a benchmark that can be used to measure the performance of many different types of networking. It provides tests for both unidirectional throughput, and end-to-end latency. It is a client/server application. The Netperf organisation also maintains a public database where you can search for previous performance benchmarks. More information is available at http://www.netperf.org/netperf/NetperfPage.html.
2.2.4.3 RUDE/CRUDE
RUDE stands for Real-time UDP Data Emitter and CRUDE for Collector for RUDE. Together, they form a package to generate and measure UDP traffic between two points.  The traffic pattern sent out by RUDE can be defined by the user. More information is available from http://rude.sourceforge.net/.
2.2.4.4 TTCP
TTCP (Test TCP) is a command-line utility for benchmarking UDP and TCP performance between two systems. More information is available at http://www.pcausa.com/Utilities/pcattcp.htm.
2.2.4.5 Tweak Tools 
An online application at http://www.dslreports.com/tweaks is able to run a simple end-user test, checking such parameters as TCP options, receive window size, and data transfer rates. It is all done through the user's web-browser making it a simple test to perform. However, the tests are limited to that site.
2.2.5 Traffic Analysis Tools
A range of tools exists for in-depth analysis of traffic. These tools can help detect protocol problems by detailed analysis of packet headers.
2.2.5.1 TCPDump
TCPDump is a free command-line utility that prints out the headers of packets on a network interface on a host. It can be used to dump all traffic for analysis or to match against particular types. The manual page provided with this package on Debian GNU/Linux systems provides detailed guidelines for use and interpretation.
2.2.5.2 Ethereal
Ethereal is a protocol analyser, which analyses data collected live off the wire or provided by applications such as tcpdump. Information is displayed in a graphical or command line interface. It supports a wide range of protocols. More information is available at http://www.ethereal.com/. It is most likely that campus administrators would have access to this tool and training to use it.
2.2.5.3 Jnettop
Jnettop is a passive measurement tool, which captures traffic coming across the host it is running on and displays streams sorted by the bandwidth they use. The result is a nice listing of communication on the network grouped by stream, which shows transported bytes and consumed bandwidth. More information is available from http://jnettop.kubs.info/.
2.3 Common problems
2.3.1 Duplex Mismatch
A point-to-point Ethernet segment (typically between a switch and an end-node, or between two directly connected end-nodes) can operate in one of two duplex modes: half duplex means that only one station can send at a time, and full duplex means that both stations can send at the same time. Full-duplex mode is preferable for performance reasons if both stations support it.
Duplex mismatch describes the situation where one station on a point-to-point Ethernet link uses full-duplex mode, and the other uses half-duplex mode. A link with duplex mismatch will seem to work fine as long as there is little traffic. But when there is traffic in both directions, it will experience packet loss and severely decreased performance to the point where performance is worse than when both stations operate in half-duplex mode. Work in the Internet2 "End-to-End Performance Initiative" suggests that duplex mismatch is one of the most common causes of bad bulk throughput. 
Duplex mismatch can be avoided by either using auto-negotiation or manually setting the duplex mode. In older devices, the common recommendation was to manually configure the desired duplex mode - typically full duplex by hand. Nowadays, it is generally preferable to rely on auto-negotiation of duplex mode. Recent equipment handles auto-negotiation in a reliable and interoperable way, with very few exceptions.
Most Network Interface Cards automatically do auto-negotiation but settings should be verified. On Linux systems, the ethtool utility displays and allows changes to card settings. This example shows a NIC set to auto-negotiate that has negotiated a full duplex connection:
twilight:/home/aharding# /usr/sbin/ethtool eth0
Settings for eth0:
        Supported ports: [ MII ]
        Supported link modes:   10baseT/Half 10baseT/Full
                                100baseT/Half 100baseT/Full
                                1000baseT/Half 1000baseT/Full
        Supports auto-negotiation: Yes
        Speed: 1000Mb/s
        Duplex: Full
        Port: Twisted Pair
        PHYAD: 1
        Transceiver: internal
        Auto-negotiation: on
        Supports Wake-on: g
        Wake-on: d
Example Duplex Check
For more complex testing, Rich Carlson's NDT (Network Diagnostic Tester) uses heuristics to try to determine whether the path to a remote host suffers from duplex mismatch. More information on this tool is available at http://e2epi.internet2.edu/ndt/. 
3 TCP Performance Primer
The Transmission Control Protocol (TCP) is the prevalent transport protocol used on the Internet today. It provides the service of a reliable byte stream, and adapts the rate of transfer to the state (of congestion) of the network and the receiver. Basic mechanisms include:
·     Segments that fit into IP packets, into which the byte-stream is split by the sender,
·     A checksum for each segment,
·     A Window, which bounds the amount of data "in flight" between the sender and the receiver,
·     Acknowledgements, by which the receiver tells the sender about segments received successfully.
Originally specified in September 1981 RFC 793, TCP was clarified, refined and extended in many documents, notably Van Jacobson's 1988 SIGCOMM article on "Congestion Avoidance and Control", later reissued as RFC 2581. It can be said that TCP's Congestion Control is what keeps the Internet working when links are overloaded. 
The characteristics of Research Networks are not typical of the Internet in general. They can be characterised as Long Fat Networks (LFNs) due to a large Bandwidth-Delay Product (BDP) and arguably do not suffer from overload in the same degree. One of the issues with this type of network is that it can be challenging to achieve high throughput for individual data transfers with transport protocols such as TCP. A number of enhancements to TCP and tuning methodologies are available to help maximise use of such networks. However, although deployment of these methods is more likely to be supported on research networks, researchers should be aware that problems may be encountered and there can be practical difficulties in reaching maximum performance.
3.1 Window-based transmission
TCP is a sliding-window protocol. The receiver tells the sender the available buffer space at the receiver (TCP header field "window"). The total window size is the minimum of sender buffer size, advertised receiver window size and congestion window size.
The sender can transmit up to this amount of data before having to wait for further buffer update from the receiver and should not have more than this amount of data in transit in the network. The sender must buffer the sent data until it has been ACKed by the receiver, so that the data can be retransmitted immediately if necessary. For each ACK the sent segment left the window and a new segment fills the window if it fits the (possibly updated) window buffer.
Due to TCP's flow control mechanism, TCP window size can limit the maximum theoretical throughput regardless of the bandwidth of the network path. Using too small a TCP window can degrade the network performance lower than expected and a too large window may have the same problems in case of error recovery.
The TCP window size is the most important parameter for achieving maximum throughput across high-performance networks. To reach the maximum transfer rate, the TCP window should be no smaller than the bandwidth-delay product.
Window size => Bandwidth (bytes/sec) x Round-trip time (sec)
Example:
window size: 8192 bytes
round-trip time: 100ms
maximum throughput: < 0.62 Mbit/sec.
3.2 Rate control
TCP flow control and window size adjustment is mainly based on two key mechanisms: Slow Start and Additive Increase/Multiplicative Decrease (AIMD), also known as Congestion Avoidance. (RFC 793 and RFC 2581)
3.2.1 Slow Start
To avoid that a starting TCP connection floods the network, a Slow Start mechanism was introduced in TCP. This mechanism effectively probes to find the available bandwidth.
In addition to the window advertised by the receiver, a Congestion Window (cwnd) value is used and the effective window size is the lesser of the two. The starting value of the cwnd window is set initially to the maximum segment size (MSS) of the connection (obtained during SYN handshake, discovered path MTU). After each acknowledgment, the cwnd window is increased by one MSS. By this algorithm, the data rate of the sender doubles each round-trip time (RTT) interval. This increase continues until either the advertised window size is reached or congestion (packet loss) is detected on the connection. When congestion is detected, the TCP flow-control mode is changed from Slow Start to Congestion Avoidance.
3.2.2 Congestion Avoidance
Once congestion is detected (through timeout and/or duplicate ACKs), the data rate is reduced in order to let the network recover.
Slow Start uses an exponential increase in window size and thus also in data rate. Congestion Avoidance uses a linear growth function (additive increase). This is achieved by introducing - in addition to the cwnd window - a slow start threshold (ssthresh).
As long as cwnd is less than ssthresh, Slow Start applies. Once ssthresh is reached, cwnd is increased by at most one segment per RTT. The cwnd window continues to open with this linear rate until a congestion event is detected.
When congestion is detected, ssthresh is set to half the cwnd. cwnd is either set to 1 if congestion was signalled by a timeout, forcing the sender to enter Slow Start, or to ssthresh if congestion was signalled by duplicate ACKs and the Fast Recovery algorithm has terminated. In either case, once the sender enters Congestion Avoidance, its rate has been reduced to half the value at the time of congestion. This multiplicative decrease causes the cwnd to close exponentially with each detected loss event.
3.2.3 Fast Retransmit
In Fast Retransmit, the arrival of three duplicate ACKs is interpreted as packet loss, and retransmission starts before the retransmission timer expires. The missing segment will be retransmitted immediately without going through the normal retransmission queue processing. This improves performance by eliminating delays that would suspend effective data flow on the link.
3.2.4 Fast Recovery
Fast Recovery is used to react quickly to a single packet loss. In Fast recovery, the receipt of 3 duplicate ACKs, while being taken to mean a loss of a segment, does not result in a full Slow Start. This is because obviously later segments got through, and hence congestion is not stopping everything. In fast recovery, ssthresh is set to half of the current send window size, the missing segment is retransmitted (Fast Retransmit) and cwnd is set to ssthresh plus three segments. Each additional duplicate ACK indicates that one segment has left the network at the receiver and cwnd is increased by one segment to allow the transmission of another segment if allowed by the new cwnd. When an ACK is received for new data, cwmd is reset to the ssthresh, and TCP enters congestion avoidance mode.
3.3 TCP Performance enhancements
RFC 1323 specifies a set of "TCP Extensions for High Performance", namely the Window Scaling Option, which provides for much larger windows than the original 64K, the Timestamp Option and the PAWS (Protection Against Wrapped Sequence numbers) mechanism. These extensions are supported by most contemporary TCP stacks, although they frequently must be activated explicitly or implicitly by configuring Large TCP Windows.
3.3.1 Window scaling & timestamps
In order to achieve high data rates with TCP over long fat networks, hosts receiving data transported by TCP (TCP sinks) must advertise a large TCP receive window.
The window is a 16 bit value (bytes 15 and 16 in the TCP header) and so is limited to a value of 65535 (64K). The receive window sets an upper limit on the sustained throughput achievable over a TCP connection since it represents the maximum amount of unacknowledged data (in bytes) there can be on the TCP path. Mathematically, achievable throughput can never be more than WINDOW_SIZE/RTT, so for a hypothetical trans-Atlantic link, with an RTT of 150ms, throughput is limited to a maximum of 3.4Mbps. With the emergence of long fat networks, the 64K limit was clearly insufficient and so RFC 1323 set out a way of scaling the advertised window, such that the 16-bit window value can represent numbers larger than 64K.
TCP window scaling option increases the maximum window size from 64KB to 1Gbyte by shifting the window field left by up to 14. The window scale option is used only during the TCP 3-way handshake (both sides send the window scale option in their SYN segments).
It is important to use TCP timestamps option with large TCP windows. With the TCP timestamps option, each segment contains a timestamp. The receiver returns that timestamp in each ACK and this allows the sender to estimate the RTT. On the other hand with the TCP timestamps option the problem of wrapped sequence number could be solved (PAWS - Protection Against Wrapped Sequences) which could occur with large windows.
There are several potential issues when TCP Windows are larger than necessary:
· When there are many active TCP connection endpoints (sockets) on a system - such as a popular Web or file server - then a large TCP window size will lead to high consumption of system (kernel) memory. This can have a number of negative consequences: The system may run out of buffer space so that no new connections can be opened, or the high occupation of kernel memory (which typically must reside in actual RAM and cannot be paged out to disk) can starve other processes of access to fast memory (cache and RAM)
· Large windows can cause large bursts of consecutive segments/packets. When there is a bottleneck in the path, perhaps because of a slower link or because of cross-traffic, these bursts will fill up buffers in the network device (router or switch) in front of that bottleneck. The larger these bursts, the higher are the risks that this buffer overflows and causes multiple segments to be dropped. So a large window can lead to sawtooth behavior and worse link utilisation than with an optimal window size where TCP could operate at a steady rate.
Both these issues are arguments in favour of buffer auto-tuning, a promising but relatively new approach to better TCP performance in operating systems.
3.3.2 SACK
Another widely implemented performance enhancement to TCP is Selective Acknowledgements (SACK, RFC 2018). In TCP as originally specified, the acknowledgements (ACKs) sent by a receiver were always "cumulative", that is, they specified the last byte of the part of the stream that was completely received. Selective Acknowledgements are a refinement of TCP's traditional "cumulative" acknowledgements.
SACKs allow a receiver to acknowledge non-consecutive data, so that the sender can retransmit only what is missing at the receiver’s end. This is particularly helpful on paths with a large bandwidth-delay product (BDP).
TCP may experience poor performance when multiple packets are lost from one window of data. With the limited information available from cumulative acknowledgments, a TCP sender can only learn about a single lost packet per round trip time. An aggressive sender could choose to retransmit packets early, but such retransmitted segments may have already been successfully received.
A Selective Acknowledgment (SACK) mechanism, combined with a selective repeat retransmission policy, can help to overcome these limitations. The receiving TCP sends back SACK packets to the sender informing the sender of data that has been received. The sender can then retransmit only the missing data segments.
Multiple packet losses from a window of data can have a catastrophic effect on TCP throughput. TCP uses a cumulative acknowledgment scheme in which received segments that are not at the left edge of the receive window are not acknowledged. This forces the sender to either wait a roundtrip time to find out about each lost packet, or to unnecessarily retransmit segments which have been correctly received. With the cumulative acknowledgment scheme, multiple dropped segments generally cause TCP to lose its ACK-based clock, reducing overall throughput. Selective Acknowledgment (SACK) is a strategy which corrects this behavior in the face of multiple dropped segments. With selective acknowledgments, the data receiver can inform the sender about all segments that have arrived successfully, so the sender need retransmit only the segments that have actually been lost.
The selective acknowledgment extension uses two TCP options. The first is an enabling option, SACK-permitted, which may be sent in a SYN segment to indicate that the SACK option can be used once the connection is established. The other is the SACK option itself, which may be sent over an established connection once permission has been given by SACK-permitted.
3.3.2.1 SACK blackholing issues
Enabling SACK globally used to be somewhat risky, because in some parts of the Internet, TCP SYN packets offering/requesting the SACK capability were filtered, causing connection attempts to fail. By now, it seems that the increased deployment of SACK has caused most of these filters to disappear but this behaviour may still be seen. If SACK blackholing is suspected, end users should contact campus administrators. If the problem is off-campus, the campus administrators will contact the NREN and the PERT as appropriate.
3.3.3 Explicit Congestion Notification
TCP traditionally has to rely on packet loss and queueing delay as the prime indicator of congestion. Both loss and delay are implicit signals of congestion. The alternative is to send explicit congestion signals.
The new Explicit Congestion Notification (ECN) mechanism consists of two components:
· Two new ECN bits in the former TOS field of the IP header:
· The "ECN-Capable Transport" (ECT) bit must only be set for packets controlled by ECN-aware transports
· The "Congestion Experienced" (CE) bit can be set by a router if
· the router has detected congestion on the outgoing link
· and the ECT bit is set.
· Transport-specific protocol extensions which communicate the ECN signal back from the receiver to the sender. For TCP, this takes the form of two new flags in the TCP header, ECN-Echo (ECE) and Congestion Window Reduced (CWR).
The basic idea is that when a transport supports ECN, it sends IP packets with ECT (ECN-Capable Transport) set. Then, when there is congestion, a router will set the CE (Congestion Experienced) bit in some of these packets. The receiver notices this, and sends a signal back to the sender (the CWR flag in the case of TCP). The sender then reduces its sending rate, as if it had detected packet loss.
(Note that the two-bit ECN field in the IP header has been redefined in the current ECN RFC (RFC3168), so that "ECT" and "CE" are no longer actual bits. But the old definition is somewhat easier to understand. If you want to know how these "conceptual" bits are encoded, please read RFC 3168.)
ECN provides two significant benefits:
· ECN-aware transports can properly adapt their rates to congestion without requiring packet loss
· Congestion feedback can be quicker with ECN, because detecting a dropped packet requires a timeout.
3.3.3.1 ECN blackholing issues
Attempts to use ECN can cause issues with certain devices such as firewalls or load balancers, which break connectivity when unexpected TCP flags (or, more rarely, unexpected IP TOS values) are encountered. The original ECN RFC (RFC 2481) didn't handle this gracefully, so activating ECN on hosts that implement this version caused much frustration because of "hanging" connections. RFC 3168 proposes a mechanism to deal with ECN-unfriendly networks, but that hasn't been widely implemented yet. If ECN blackholing is suspected, end users should contact their campus administrators. If the problem is off-campus, the campus administrators will contact the NREN and the PERT as appropriate.
3.3.3.2 ECN network support (or lack thereof)
ECN requires routers to use an Active Queue Management (AQM) mechanism such as Random Early Detection (RED). In addition, routers have to be able to mark eligible packets with the CE bit when the AQM mechanism notices congestion. Random Early Detection is widely implemented on routers today, although it is rarely activated in actual networks. The capability to ECN-mark packets can be added to CPU- or Network-Processor-based routing platforms relatively easily, Cisco's CPU-based routers such as the 7200/7500 routers support this with newer software, for example, but if queueing/forwarding is performed by specialized hardware (ASICs), this function has to be designed into the hardware from the start. Therefore, most of today's high-speed routers sometimes cannot easily support ECN.
3.4 High-performance TCP variations
There have been numerous ideas for improving TCP over the years. Some of those ideas have been adopted by mainstream operations (after thorough review). Recently there has been an uptake in work towards improving TCP's behavior with Long Fat Networks. This is a reference list of some of the proposals and analysis.
3.4.1 HSTCP, H-TCP, BIC, FAST etc.
· HSTCP (HighSpeed TCP) by Sally Floyd. Information: http://www.icir.org/floyd/hstcp.html.
· H-TCP by Doug Leith et al. from the Hamilton Institute. Information: http://www.hamilton.ie/net/htcp/. 
· TCP Westwood from UCLA. Information: http://www.cs.ucla.edu/NRL/hpi/tcpw/.
· FAST from Caltech. Information: http://netlab.caltech.edu/FAST/
· BIC-TCP/CUBIC from North Carolina State University. Information: http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/.
· Scalable TCP by Tom Kelly. Information: http://www-lce.eng.cam.ac.uk/~ctk21/scalable/. 
· LTCP from Texas A&M University. Information: http://dropzone.tamu.edu/techpubs/2004/TAMU-ECE-2004-03.pdf. 
· SABUL from the University of Illinois. Information: http://www.dataspaceweb.net/papers/sabul-hpdt-03.pdf. 
· SOBAS from Georgia Tech. Information: http://www.cercs.gatech.edu/tech-reports/tr2004/git-cercs-04-03.pdf 
There are several studies that compare the performance of the various new TCP variants, including
· TCP Stack Measurements on Lightly Loaded Testbeds, Les Cottrell (SLAC), 2002-2003. Available: http://www-iepm.slac.stanford.edu/monitoring/bulk/fast/
· Evaluation of Advanced TCP Stacks on Fast Long-Distance Production Networks, H. Bullot, R. Les Cottrell, R. Hughes-Jones, J. Grid Comput. 1(4): 345-359 (2003). 
· FAST TCP in High-Speed Networks: An Experimental Study, S. Hegde, D. Lapsley, B. Wydrowski, J. Lindheim, D. Wei, C. Jin, S. Low, and Harvey Newman, GridNets 2004. Available http://netlab.caltech.edu/pub/papers/gridnets04.pdf
· Protocols for long-distance networks, Guy Almes, TERENA Networking Conference 2004, PowerPoint presentation. Available: http://www.terena.nl/conferences/tnc2004/programme/presentations/show.php?pres_id=119
· Measured Comparative Performance of TCP Stacks, S. Jansen and A. McGregor, Proc. PAM 2005. Available: http://www.pam2005.org/PDF/34310332.pdf
· TCP Evaluation Discussion Forum, http://www.hamilton.ie/net/eval/
4 Hardware considerations
4.1 Network adapters
One aspect that causes many performance problems is adapter and NIC compatibility issues.  The following link from Cisco covers many vendor NICs: 
http://www.cisco.com/en/US/products/hw/switches/ps700/products_tech_note09186a00800a7af0.shtml
4.1.1 TCP Offload Engines (TOEs)
The idea of a TOE is to put the TCP implementation onto the network adapter itself. This relieves the computer's CPUs of handling TCP packet processing. Large-Send Offload (LSO) is typically assumed to be a subset of TOE functionality.
The drawbacks of TOEs are that they require driver support in the operating system, as well as additional kernel/driver interfaces for TCP-relevant operations. Also, when the operating system implements improvements to TCP over time, those normally have to be implemented on the TOE as well. And additional instrumentation such as the Web100 kernel instrumentation set would also need to be implemented separately.
For these and other reasons, TOEs (which are a relatively old idea) have never become a mainstream technology. In contrast, some more generic performance enhancements such as Large Send Offload (LSO), interrupt coalescence, or checksum offload, are now part of many "commodity" network adapter chip-sets, and enjoy increasing support in operating systems.
4.1.2 Large Send Offload (LSO)
TCP Large Send Offload is a feature available in some network adapters. With TCP LSO (aka Segmentation Offload), TCP can pass a buffer to be transmitted that is bigger than the MTU supported by the medium. Intelligent adapters implement large sends by using the prototype TCP and IP headers of the incoming send buffer to carve out segments of required size. Copying the prototype header and options, then calculating the sequence number and checksum fields creates TCP segment headers. All other information, such as options and flag values, are preserved except in a few special instances. More information on LSO is available at http://www.microsoft.com/whdc/device/network/taskoffload.mspx.
4.1.3 Interrupt Coalescence
A common bottleneck for high-speed data transfers is the high rate of interrupts that the receiving system has to process - traditionally, a network adapter generates an interrupt for each frame that it receives. These interrupts consume signalling resources on the system bus(es) and introduce significant CPU overhead as the system transitions back and forth between productive work and interrupt handling many thousands of times a second.
To alleviate this load, some high-speed network adapters support interrupt coalescence or interrupt moderation. When multiple frames are received in a short timeframe ("back-to-back"), these adapters buffer those frames locally and only interrupt the system once.
While this scheme lowers interrupt-related system load significantly, it can have adverse effects on timing and can make TCP traffic more bursty. Therefore it would make sense to combine interrupt coalescence with on-board time stamping functionality. Unfortunately that doesn't seem to be implemented in commodity hardware/driver combinations yet.
On Linux systems with additional driver support, the ethtool -C command can be used to modify the interrupt coalescence settings of network devices on the fly.
4.1.4 Checksum Offload
A large part of the processing costs related to TCP is the generation and verification of the TCP checksum. Many Gigabit Ethernet chipsets include on-board hardware that can verify and/or generate these checksums. This significantly reduces the amount of work that has to be done by the system kernel on a CPU, especially when combined with other adapter/driver enhancements such as Large-Send Offload. Checksum Offload is also part of TCP Offload Engines (TOEs), which move the entire TCP processing from the CPU(s) to the adapter. Checksum Offload requires special driver support and a kernel infrastructure that supports such drivers.
4.2 File systems and disks
Different file systems can offer different levels of performance under varying conditions. Depending on the use of the system, an end-host administrator may wish to tune the file system to improve read or write performance. 
4.2.1 Benchmarking
Benchmarking is an important part of checking performance. Two applications for benchmarking disk and/or file system performance are bonnie++ and iozone. 
4.2.1.1 Bonnie++
Bonnie++ is an application that provides a number of checks for file system performance. The basic tests are for the types of file system activity that have been observed to be bottlenecks in I/O-intensive applications. For each of these tests, Bonnie++ reports the number of Kilo-bytes processed per elapsed second, and the % CPU usage.  Further tests available are file create/stat/unlink tests to simulate some operations that are common bottlenecks on large Squid and INN servers, and machines with tens of thousands of mail files in /var/spool/mail. 
Bonnie++ is available from http://sourceforge.net/projects/bonnie/. 
4.2.1.2 Iozone
The iozone benchmark tests file I/O performance for read, write, re-read, re-write, read backwards, read strided, fread, fwrite, random read, pread, mmap, aio_read and aio_write operations. It produces MS Excel compatible output for graph generation and is available for AIX, BSDI, HP-UX, IRIX, FreeBSD, Linux, OpenBSD, NetBSD, OSFV3, OSFV4, OSFV5, SCO OpenServer, Solaris, Windows95/98/NT.  
Iozone is available from http://www.iozone.org/. This site also has a handy comparison of the performance of various file systems at http://www.iozone.org/src/current/DL580_multi.xls. 
4.2.2 Tuning
Different file systems have different features available for tuning. Care must be taken when enabling or disabling features that the overall impact on the system is not negative compared to performance gain. Here are a few specific tuning tips that may be appropriate for some systems.
4.2.2.1 noatime
Setting noatime as a mount option is the easiest way to dramatically increase filesystem performance for read operations. Normally, when a file is read, Unix-like systems update the inode for the file with this access time so that the time of last access is known. This operation means that read operations also involve writing to the filesystem - a severe performance bottleneck in most cases. If knowing this access time is not critical, it may be appropriate to use this option.
4.2.2.2 dir_index
For ext3, dir_index option is an option whereby ext3 uses hashed binary-trees to speed up lookup in directories. This significantly speeds up directory traversal.
5 Operating system considerations
5.1 Out-of-the box system settings and tuning
Operating Systems (OSs) can sometimes reconfigure network interface settings back to their default, even when the correct values have been written in a specific configuration file. This is the result of bugs, and they appear in almost all OSs. Sometimes they get fixed in a given release but then get broken again in a later release. It is not known why this is the case but it may be partly that driver programmers don't test their products under conditions of large latency. It is worth noting experience shows that 'ifconfig' works well for tuning txqueuelen and MTU sizes.
5.2 Operating-specific tuning tips and tools
Most operating systems require manual tuning to use large TCP windows and other performance enhancements. This section contains information on this and other tuning tips and resources available which have been gathered by contributors to the Géant2 PERT and to Géant2 Service Activity PACE (Performance and Allocated Capacity for End-users).
5.2.1 Microsoft Windows
It appears that, by default, not only does Microsoft Windows not support TCP 1323 scalable windows, but the required key is not even in the Windows registry. The key (Tcp1323Opts) can be added to at least 2 places, and it is not clear if either location has an advantage over the other.
[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\MSTCP]
OR
[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters]
Value Name: Tcp1323Opts
Data Type: REG_DWORD (DWORD Value)
Value Data: 0, 1, 2 or 3
    * 0 = disable RFC 1323 options
    * 1 = window scale enabled only
    * 2 = time stamps enabled only
    * 3 = both options enabled
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(Note: the key need only be added to one of the locations above, not both)
Inquiry at Microsoft has revealed that the default send window is 8KB and that there is no official support for configuring a system-wide default. However, the current Winsock implementation uses the following undocumented registry key for this purpose
[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\AFD\Parameters]
Value Name: DefaultSendWindow
Data Type: REG_DWORD (DWORD Value)
Value Data: The window size in bytes. 
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The maximum window size value is unknown.
According to Microsoft, this parameter may not be supported in future Winsock releases.
5.2.2 Linux
A comprehensive guide to TCP Tuning Guide on Linux is available at http://www-didc.lbl.gov/TCP-tuning/linux.html. Some particularly useful aspects are detailed below.
Linux has its own implementation of the TCP/IP Stack. With recent kernel versions, the TCP/IP implementation contains many useful performance features. Parameters can be controlled via the /proc interface or using the sysctl mechanism.
A typical configuration for high Transmission Control Protocol throughput over Long Fat Networks would include the following in /etc/sysctl.conf:
# setting some decent tcp tuning values
net/core/rmem_default = 65536
net/core/wmem_default = 65536
net/core/rmem_max = 8388608
net/core/wmem_max = 8388608
net/ipv4/tcp_sack = 1
# net/ipv4/tcp_mem = 1048576 2097152 4194304    # I'm not exactly sure this is any good.
net/ipv4/tcp_rmem = 8192 65536 8388608
net/ipv4/tcp_wmem = 8192 87380 8388608
net/core/netdev_max_backlog = 2500
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Note if you have a server with hundreds of connections, you might not want to use a large default value for TCP buffers, as memory will quickly run out.
If you are using a web100 kernel, the following parameters seem to improve networking performance even further:
# web100 tuning
# turn off caching of ssthresh
net/ipv4/web100_no_metrics_save = 1
# turn off using txqueuelen as part of congestion window computation
net/ipv4/WAD_IFQ = 1
# turn on HSTCP
net/ipv4/tcp_altAIMD = 1
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Note that although some of these parameters have ipv4 in their names, they apply equally to TCP over IPv6.
Another important parameter to note is txqueuelen, the transmission queue length, which limits the number of packets in the transmission queue in the interface's device driver. The default value is often not suitable for high-speed interfaces. For Gigabit Ethernet interfaces, it is suggested to use at least a txqueuelen of 1000. Values of up to 8000 have been used successfully to further improve performance, e.g.
ifconfig eth0 txqueuelen 1000
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Older versions of Linux have a TCP/IP weakness in that their interface buffers' max window size is based on the experience of previous connections - if you have loss at any point (or a bad end host at the same route) you limit your future TCP connections. So, you have to flush the route cache to improve performance.
sysctl -w net.ipv4.route.flush=1
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5.2.3 BSD Variants
A comprehensive guide to TCP Tuning Guide on FreeBSD is available at http://www-didc.lbl.gov/TCP-tuning/FreeBSD.html. Information on tuning OpenBSD is available at http://www.openbsd.org/faq/faq11.html.
5.2.4 MAC OS X
As Mac OS X is mainly a BSD derivative, you can use similar mechanisms to tune the TCP stack. For testing temporary improvements, you can directly use sysctl in a terminal window: (you have to be root to do that)
sysctl -w kern.ipc.maxsockbuf=8388608
sysctl -w net.inet.tcp.rfc1323=1
sysctl -w net.inet.tcp.sendspace=1048576
sysctl -w net.inet.tcp.recvspace=1048576
sysctl -w kern.maxfiles=65536
sysctl -w net.inet.udp.recvspace=147456
sysctl -w net.inet.udp.maxdgram=57344
sysctl -w net.local.stream.recvspace=65535
sysctl -w net.local.stream.sendspace=65535
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Users that are unfamiliar with terminal windows can also use the GUI tool "TinkerTool System" and use its Network Tuning option to set the TCP buffers. The TinkerTool System is available from http://www.bresink.de/osx/TinkerToolSys.html.
5.2.5 Solaris
Solaris 10, and Solaris 9 with patches, supports TCP Multidata Transmit (MDT), which is Sun's name for Large Send Offload (LSO). In Solaris 10, this is enabled by default, but in Solaris 9 (with the required patches for MDT support), the kernel and driver have to be reconfigured to be able to use MDT. More information is available from http://docs.sun.com/app/docs/doc/817-0493/6mg9pruab?a=view for Solaris 9 and http://docs.sun.com/app/docs/doc/817-0547/6mgbdbsmn?a=view#whatsnew-updates-98 for Solaris 10.
The TCP/IP stack in Solaris 10 has been largely rewritten from previous versions, mostly to improve performance. This improved version is known as FireEngine. More information is available from FireEngine - A New Networking Architecture for the Solaris Operating System, S. Tripathi, November 2004, http://www.sun.com/bigadmin/content/networkperf/FireEngine_WP.pdf
Other useful resources for tuning Solaris include the Solaris OS Network Performance, BigAdmin System Administration Portal at  http://www.sun.com/bigadmin/content/networkperf/, a TCP Tuning Guide for Solaris at  http://www-didc.lbl.gov/TCP-tuning/Solaris.html and Solaris - Tuning your TCP/IP stack, http://www.sean.de/Solaris/soltune.html
6 Application and protocol considerations
6.1 Designing tolerant applications
As part of Section 1, Performance Basics and Section 3, TCP Performance Primer, some performance issues were highlighted that can be dealt with by good application and protocol design.
The network components of RTT are the One Way Delays in both directions (which can use different paths), so read the information on One Way Delay in this document on how those can be improved. The speed of response generation can be improved through optimising the responding program. Delay variation is an issue for real-time applications such as audio/video conferencing systems. They usually employ a Jitter Buffer to eliminate the effects of delay variation.
One particular kind of packet reordering concerns packets of different sizes. A larger packet takes longer to transfer over a serial link (or a limited-width backplane inside a router), so larger packets may be "overtaken" by smaller packets that were sent subsequently. This is usually not a concern for high-speed bulk transfers - where the segments tend to be equal-sized (hopefully Path MTU-sized), but may pose problems for naive implementations of multi-media (Audio/Video) transport.
Real-time media applications such as audio/video conferencing tools often experience problems when operated on networks that reorder packets. This is somewhat remarkable in that all of these applications have Jitter Buffers to eliminate the effects of Delay Variation on the real-time media streams. Obviously, the code that manages these jitter buffers is often not written in a way to accommodate reordered packets sensibly, although this could be done with moderate effort.
6.1.1 "Chatty" Protocols
A common problem with naively designed application protocols is that they are too "chatty", i.e. they imply too many round-trip cycles where one party has to wait for a response from the other. It is an easy mistake to make, because when testing such a protocol locally, these round-trips usually don't have much of an impact on overall performance. But when used over network paths with large RTTs, chattiness can dramatically impact perceived performance.
6.1.1.1 Example: SMTP (Simple Mail Transfer Protocol)
The Simple Mail Transfer Protocol (SMTP) is used to transport most e-mail messages over the Internet. In its original design (RFC 821, now superseded by RFC 2821), the protocol consisted of a strict sequence of request/response transactions, some of them very small. Taking an example from RFC 2920, a typical SMTP conversation between a client, "C" that wants to send a message, and a server "S" that receives it, would look like this:
   S: <wait for open connection>
   C: <open connection to server>
   S: 220 Innosoft.com SMTP service ready
   C: HELO dbc.mtview.ca.us
   S: 250 Innosoft.com
   C: MAIL FROM:<mrose@dbc.mtview.ca.us>
   S: 250 sender <mrose@dbc.mtview.ca.us> OK
   C: RCPT TO:<ned@innosoft.com>
   S: 250 recipient <ned@innosoft.com> OK
   C: RCPT TO:<dan@innosoft.com>
   S: 250 recipient <dan@innosoft.com> OK
   C: RCPT TO:<kvc@innosoft.com>
   S: 250 recipient <kvc@innosoft.com> OK
   C: DATA
   S: 354 enter mail, end with line containing only "."
    ...
   C: .
   S: 250 message sent
   C: QUIT
   S: 221 goodbye
This simple conversation contains nine places where the client waits for a response from the server.
In order to improve this, the PIPELINING extension (RFC 2920) was later defined. When the server supports it - as signalled through the ESMTP extension mechanism in the response to an EHLO request - the client is allowed to send multiple requests in a row, and collect the responses later. The previous conversation becomes the following one with PIPELINING:
   S: <wait for open connection>
   C: <open connection to server>
   S: 220 innosoft.com SMTP service ready
   C: EHLO dbc.mtview.ca.us
   S: 250-innosoft.com
   S: 250 PIPELINING
   C: MAIL FROM:<mrose@dbc.mtview.ca.us>
   C: RCPT TO:<ned@innosoft.com>
   C: RCPT TO:<dan@innosoft.com>
   C: RCPT TO:<kvc@innosoft.com>
   C: DATA
   S: 250 sender <mrose@dbc.mtview.ca.us> OK
   S: 250 recipient <ned@innosoft.com> OK
   S: 250 recipient <dan@innosoft.com> OK
   S: 250 recipient <kvc@innosoft.com> OK
   S: 354 enter mail, end with line containing only "."
    ...
   C: .
   C: QUIT
   S: 250 message sent
   S: 221 goodbye
There are still a couple of places where the client has to wait for responses, notably during initial negotiation; but the number of these situations has been reduced to those where the response has an impact on further processing. The PIPELINING extension reduces the number of turn-arounds from nine to four. This speeds up the overall mail submission process when the RTT is high, reduces the number of packets that have to be sent (because several requests, or several responses, can be sent as a single TCP segment), and significantly decreases the risk of timeouts (and consequent loss of connection) when the connectivity between client and server is really bad.
The X Window System protocol (X11) is an example of a protocol that has been designed from the start to reduce turn-arounds.
6.1.2 Performance-friendly I/O interfaces
For applications with high input/output performance requirements (including network I/O), it is worthwhile to look at operating system support for efficient I/O routines.
6.1.2.1 read()/write() 
As an example, here is simple pseudo-code that reads the contents of an open file in and writes them to an open socket out - this code could be part of a file server. A straightforward way of coding this uses the read()/write() system calls to copy the bytes through a memory buffer:
#define BUFSIZE 4096
long send_file (int in, int out) {

  unsigned char buffer[BUFSIZE];
  int result; long written = 0;
  while (result = read (in, buffer, BUFSIZE) > 0) {

    if (write (out, buffer, result) != result)
      return -1;
    written += result;
  }

  return (result == 0 ? written : result);
}

Unfortunately, this common programming paradigm results in high memory traffic and inefficient use of a system's caches. Also, if a small buffer is used, the number of system operations and, in particular, of user/kernel context switches will be quite high.
6.1.2.2 mmap()/write() 
On systems that support memory mapping of files using mmap(), the following is more efficient if the source is an actual file:
#define BUFSIZE 4096
long send_file (int in, int out) {

  unsigned char *b;
  struct stat st;
  if (fstat (in, &st) == -1) return -1;
  if ((b = mmap (0, st.st_size, PROT_READ, 0)) == -1)
    return -1;
  madvise (b, st.st_size, MADV_SEQUENTIAL);
  return write (out, b, st.st_size);
}

6.1.2.3 sendfile()
An even more efficient - and also more concise - variant is the sendfile() call, which directly copies the bits from the file to the network.
#define BUFSIZE 4096
long send_file (int in, int out) {

  off_t offset = 0;
  return sendfile (out, in, &offset, 1);
}

Note that an operating system could optimise this internally up to the point where data blocks are copied directly from the disk controller to the network controller without any involvement of the CPU.
For more complex situations, the sendfilev() interface can be used to send data from multiple files and memory buffers to construct complex protocol units with a single call.
6.2 Choosing applications
A common problem for many applications is the replication of - often large - data sets from one system to another, or to several others. This can require reliable transfer such as that provided by TCP, access control based on some sort of authentication, and encryption. This section provides an overview of some common applications and protocols. As part of Section 2, ‘First Steps at Investigating Performance Problems’ and Section 3, ‘TCP Performance Primer’, some high-performance variants of standard applications and protocols were introduced. It is often worth investigating if optimised versions of standard software packages are available or if packages can be tuned for performance. 
6.2.1 Protocols
6.2.1.1 TCP
HS-TCP, H-TCP, BIC-TCP and FAST are all TCP variations optimised for performance. More detail is available in the final references and in Section 3. It is worth checking with the campus network provider and NREN when choosing to use a TCP variant as these variants can have unexpected effects on shared links.
6.2.1.2 RTP
Real-Time Transport Protocol (RTP) is a generic transport protocol for real-time media streams such as audio or video. RTP is typically run over the User Datagram Protocol (UDP). RTP's services include timestamps and identification of media types. The User Datagram Protocol (UDP) is a very simple layer over the host-to-host protocol. It only adds 16-bit source and destination port numbers for multiplexing between different applications on the pair of hosts, and 16-bit length and checksum fields. UDP can perform badly in congested networks.
6.2.1.3 FTP 
File Transfer Protocol (FTP), was one of the earliest protocols used on the ARPAnet and the Internet, and predates both TCP and IP. It supports simple file operations over a variety of operating systems and file abstractions, and has both a text and a binary mode. FTP uses separate TCP connections for control and data transfer.
6.2.1.4 HTTP
Hypertext Transfer Protocol (HTTP) is the basic protocol used by the World Wide Web. It is quite efficient for transferring files, but is typically used to transfer from a server to a client only.
6.2.1.5 SSH
Secure Shell (SSH) is a widely used protocol for remote terminal access with secure authentication and data encryption. It is also used for file transfers, using tools such as scp (Secure Copy), sftp (Secure FTP), or rsync-over-ssh.
When users use SSH to transfer large files, they often think that performance is limited by the processing power required for encryption and decryption. While this can indeed be an issue in a LAN context, the bottleneck over the full network path is most likely a window limitation. Even when TCP parameters have been tuned to allow sufficiently large TCP Windows, the most common SSH implementation (OpenSSH) has a hardwired window size at the application level.
This limitation is removed in a modification of the OpenSSH software provided by the Pittsburgh Supercomputing Centre.
6.2.1.6 BitTorrent 
BitTorrent is an example of a peer-to-peer file-sharing protocol. It employs local control mechanisms to optimise the global problem of replicating a large file to many recipients, by allowing peers to share partial copies as they receive them. BitTorrent has become a focus of attention of media interest groups such as the Motion Picture Artists of America (MPAA) but is also used to distribute large software archives under "Free Software" or similar legal-redistribution regimes. More information is available at http://www.bittorrent.com/. 
6.2.2 Applications
6.2.2.1 RCP 
Remote Copy (RCP) from Berkeley, is a convenient application for transferring files between Unix systems, but lacks real security beyond address-based authentication and clear-text passwords and has mostly fallen out of use.
6.2.2.2 SCP 
Secure Copy (SCP) is a file-transfer protocol using SSH. It provides various modern methods of authentication and encryption, but its current implementations shares performance limitations with SSH.
6.2.2.3 OpenSSH
When the window-size limitation for SSH as detailed in the previous section is removed, encryption/decryption performance may become the bottleneck again. Therefore it is useful to choose a encryption/decryption cipher that performs well, while still being regarded as sufficiently secure to protect the data in question. Here is a table that displays the performance of several ciphers supported by OpenSSH in a reference setting:
	cipher 
	throughput

	3des-cbc 
	2.8MB/s

	arcfour 
	24.4MB/s

	aes192-cbc 
	13.3MB/s

	aes256-cbc 
	11.7MB/s

	aes128-ctr 
	12.7MB/s

	aes192-ctr 
	11.7MB/s

	aes256-ctr 
	11.3MB/s

	blowfish-cbc 
	16.3MB/s

	cast128-cbc 
	7.9MB/s

	rijndael-cbc@lysator.liu.se 
	12.2MB/s


SSH Cipher Performance
The High Performance Enabled SSH/SCP version also supports an option to the SCP program that supports use of the "none" cipher, when confidentiality protection of the transferred data is not required.
6.2.2.4 Apache
The Apache web server is a freely available application, which can be tuned for performance. Performance tuning tips for Apache HTTP Server Version 1.3 are available at http://httpd.apache.org/docs/misc/perf-tuning.html  and for Apache 2.0 at http://httpd.apache.org/docs-2.0/misc/perf-tuning.html.  Section 7.2 describes a case study in which Apache 2.x is tuned to cope with many simultaneous connections. 

7 Performance Case Studies
7.1 Transatlantic File Transfer Performance Troubleshooting
This example of performance troubleshooting focuses on end-host issues and is from a case handled by the pilot PERT in 2004. It shows how a problem was identified and how tuning of end-host systems, without intervention on the network path delivered significant improvements.
7.1.1 Problem Statement
Initially, a problem was observed transferring files from a host in FermiLab (US) to a host in Strasbourg. The data consisted of many 15MByte files, totalling a few hundred gigabytes and the transferring application was rsync. Although the bottleneck links on the network were 100Mbps, the achieved transfer rate was typically only 5Mbps.
7.1.2 Results Summary
Test machines in similar locations were set up and web100 tools installed. These tests showed that while memory-memory routinely achieved 90+Mbps, using nttcp, disk-disk only achieved 20Mbps. This narrowed the problem down to something on the host systems, in particular, limited system & disk i/o capability on the receiving machine.
An alternative receiving test machine was set up, giving a scenario of a long path, with fast machines on both ends. In this set of tests, data transfer via ssh over TCP was slower than accountable by cryptographic overhead. This highlighted the ssh/ssl buffer limitations on both the sender-side and receiver-side end hosts.
7.1.3 Improving Performance
On Linux, auto-buffer-tuning could be used on the send and receive hosts. It was calculated that the hosts needed to have at least 8MBytes of buffer space available for 1xGigE across an ocean. Once these parameters were changed on the end hosts, final throughput reached 429Mbits/sec for memory to memory transfer and ~30Mbytes/sec (~240Mbits/sec) disk to disk.
7.2 High-Performance Web Server For Large Audiences
HEAnet's National Mirror Server for Ireland, ftp.heanet.ie currently mirrors over 50,000 software projects and is a popular source of content on the Internet. It serves mostly static content via HTTP, FTP and RSYNC, all available via IPv4 and IPv6. It regularly sustains over 20,000 concurrent connections on a single Apache instance and has served as many as 27,000 with about 3.5 Terabytes of content per day. The front-end system is a Dell 2650, with two 2.4 Ghz Xeon processors, 12Gb of memory and the usual 2 system disks and 15k RPM SCSI disks, running Debian GNU/Linux and Apache 2.x.
Considerable system and application tuning enabled this system to achieve these performance rates. Apachebench was used for web server benchmarking, bonnie++ and iozone for file system benchmarking and an in-house script to measure buffering, virtual memory management and scheduling. 
Some of the steps taken to tune this system are highlighted below:
7.2.1 Apache
7.2.1.1 MPM Tuning
Apache 2.x has a choice of multi-processing modules. For this system, the prefork MPM was chosen, tuned to have 10 spare servers, the number of spare servers calculated such that there are enough child processes available to handle new requests when the rate of new connections exceeds the rate at which Apache can manage to create new processes.
7.2.1.2 Module Compilation
Apache modules can be compiled directly into one binary, or as dynamically-loaded shared objects which are then loaded by a smaller binary. For our load, a small performance gain (measurable as about 0.2%) was found by compiling the modules in directly.
7.2.1.3 htaccess
As the highperformance.conf sample provided with Apache suggests, turning off the use of .htaccess files, if appropriate can give significant performance improvements.
7.2.1.4 sendfile
Sendfile is a system call that enables programs to hand off the job of sending files out of network sockets to the kernel, improving performance and efficiency. It is enabled by default at compile-time if Apache detects that the system supports the call. However, the Linux implementation of sendfile corrupted IPv6 sessions so this was not implemented on ftp.heanet.ie for policy reasons.
7.2.1.5 Mmap
Mmap (memory map) support allows Apache to treat a file as if it were a contiguous region of memory, greatly speeding up the I/O by dispensing with unnecessary read operations. This allowed serving of files roughly 3 times quicker.
7.2.1.6 mod_cache
mod_disk_cache is an experimental feature in Apache 2.x that caches files in a defined area as they are being served for the first time. Repeated requests are served from this cache, avoiding the slower file systems. The default was further tuned to increase the CacheDirLevel4 to 5 to facilitate more files in the cache.
7.2.1.7 Configure options
The following configure options were used:
CFLAGS="-D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE"; export CFLAGS
"./configure" \

"--with-mpm=prefork" \

"--prefix=/usr/local/web" \

"--enable-cgid" \

"--enable-rewrite" \

"--enable-expires" \

"--enable-cache" \

"--enable-disk-cache" \

"--without-sendfile"
As little as possible was compiled into the httpd binary to reduce the amount of memory used. The CFLAGS exported enabled serving of files over 2Gb in size.
7.2.2 File System
Choosing a fast and efficient filesystem is very important for a web server. Tests at the time showed XFS gave better performance than ext2 and ext3, up to a margin of 20%. As a caveat, as the number of used inodes in the filesystem grows, XFS becomes very slow at directory traversal. This resulted in a migration to ext3, despite the reduced performance.
7.2.2.1 noatime
One significant mount option, noatime, was set as knowing the access time was not critical for a busy mirror server.
7.2.2.2 logbufs
For XFS, the logbufs mount option allows the administrator to specify how many in-memory log buffers are used. While it was not clear what these log buffers do, increasing this number to its maximum increased performance. This performance increase comes at the expense of memory, which was acceptable for the overall design.
7.2.2.3 dir_index
For ext3, dir_index option is an option whereby ext3 uses hashed binary-trees to speed up lookup in directories. This has proved much faster for directory traversal.
7.2.3 Kernel
The system originally ran the SGI Linux 2.4 kernel, which gave about 12,000 sessions as a maximum. However after simply upgrading to the 2.6 kernel the server hit the compiled-in 20,000 limit of Apache without any additional effort, so the scheduler in the 2.6 kernel appears to have markedly improved.
7.2.3.1 File Descriptors
One of the most important options to tune for a large-scale web server is the maximum number of file descriptors the system is allowed to have opened at once. The default is not sufficient when serving thousands of clients. It is important to remember that regular files, sockets, pipes and the standard streams for every running process, are all classed as file descriptors and that it is easy to run out.
This figure was set to 5049800.
7.2.3.2 Virtual Memory Manager
In Linux, the VM manages the memory allocated to processes and the kernel and also manages the in-memory cache of files. By far the easiest way to “tune” the VM in this regard is to increase the amount of memory available to it. This is probably the most reliable and easy way of speeding up a web server - add as much memory as you can afford.
The VM takes a similar approach to mod_disk_cache for freeing up space - it assigns programs memory as they request it and then periodically prunes back what can be made free. If a lot of files are being read very quickly, the rate of increase of memory usage will be very high. If this rate is so high that memory is exhausted before the VM has had a chance to free any there will be severe system instability. To correct for this 5 sysctl options were set:
vm/min_free_kbytes = 204800
vm/lower_zone_protection = 1024
vm/page-cluster = 20
vm/swappiness = 200
vm/vm_vfs_scan_ratio = 2
· The first sysctl sets the VM to aim for at least 200 Megabytes of memory to be free. 
· The second sysctl sets the amount of “lower zone” memory directly addressable by the CPU that should be kept free. 
· The third sysctl, “vm/page-cluster” tells Linux how many pages to free at a time when freeing pages. 
· The fourth sysctl, “swappiness,” is a very vague sysctl which seems to boil down to how much Linux “prefers” swap, or how “swappy” it should be. 
· The final sysctl, the “vm vfs scan ratio,” sets what proportion of the filesystem-data caches should be scanned when freeing memory. By setting this to 20 we mean that 1/20th of them should be scanned - this means that some cached data is kept longer than it otherwise would, leading to increased opportunity for re-use.
7.2.3.3 Network Stack
Six sysctl options were set relating to the network stack:
net/ipv4/tcp_rfc1337=1
net/ipv4/tcp_syncookies=1
net/ipv4/tcp_keepalive_time = 300
net/ipv4/tcp_max_orphans=1000
sys/net/core/rmem_default=262144
sys/net/core/rmem_max=262144
· TCP syncookies and the RFC1337 options were enabled for security reasons. 
· The default tcp keepalive time was set to 5 minutes to avoid the situation where httpd children handling connections which have not been responsive for 5 minutes are not needlessly waiting in the queue. This has the minor impact that if the client does try to continue with the TCP session at a later time it will disconnect. 
· The max orphans option ensures that even despite the 5 minute timeout there are never more than 1,000 processes held in such a state, and will instead start closing the sockets of the longest waiting processes. This prevents process starvation due to many broken connections. 
· The final two options increase the amount of memory generally available to the networking stack for queueing packets.
7.2.3.4 Hyperthreading
Hyperthreading is a technology, which makes one processor show up as two with the aim of improving resource usage efficiency within the processor. The web server was benchmarked with hyperthreading enabled and hyperthreading disabled. Hyperthreading enabled resulted in a 37% performance increase (from 721 requests per second to 989 requests per second, with the same test). It was therefore enabled.
7.3 Internet2 Land Speed Record Hosts
The Internet2 Land Speed Record is an open-ended competition for the highest-bandwidth, end-to-end transfer of data. More information on the rules and requirements for the competition is available from http://lsr.internet2.edu/. One significant requirement for entries is that all hardware units and software modules used to transfer contest data on the source node, the destination node, the links, and the routers must be offered for commercial sale or as open source software to all U.S. members of the Internet2 community. This means that the lessons learned from these demonstration events can be learned and applied to production research projects. The following are some examples of hosts, which have set records.
7.3.1 SUNET/SPRINT 
In September 2004, SUNET and Sprint set a Land Speed Record of 124,935 terabit-meters per second for multiple and single streams in IPv4. Significantly, this result was achieved on the normal GigaSunet and Sprintlink production infrastructures, shared by millions of other users of those networks. Detailed information about this record is available at http://proj.sunet.se/LSR3-s/.
The sender system was a Dell 2650, with one single Intel Xeon 2.0 GHz CPU and 1024 Mbytes of RAM. The receiver was a Dell Precision 650, with one single Intel Xeon 2.8 GHz CPU and 512 Mbytes of RAM. Both hosts used the Intel® PRO/10GbE LR Network Interface Card. While setting the record, it was noted that the PCI-X bus and the memory bandwidth in the end hosts are currently the bottlenecks.
The transferring application was ttcp and the operating system was NetBSD with the following tuning applied:
7.3.1.1 Kernel compile-time parameters:
options NMBCLUSTERS=8192 # Increase number of network buffers.
options MAX_KMAPENT=3000 # Need more kmap entries due to extensive use of kernel virtual memory
DGE_BUFFER_SIZE=8192 # Size of NIC received pages used in private pool
dge* at pci? dev ? function ? # Intel PRO/10GbE network adapter 
7.3.1.2 Sysctl parameters:
net.inet.tcp.init_win=131000 # Tune TCP start up time
kern.sbmax=300000000 # Max memory a socket can use, 300MB
kern.somaxkva=300000000 # Max memory for all sockets together, 300MB
net.inet.tcp.sendspace=250000000 # Size of transmit window, 250MB
net.inet.tcp.recvspace=250000000 # Size of receive window, 250MB
net.inet.ip.ifq.maxlen=20000 # Max length of interface queue
7.3.1.3 Ifconfig settings:
ifconfig dge0 10.0.0.1/30 ip4csum tcp4csum udp4csum link0 link1 mtu 4470 up
ip4csum, tcp4csum, udp4csum # Enable hardware checksums
link0, link1 # Set PCI-X burst size to 4k.
7.3.2 CALTECH/CERN/CENIC
In November 2004, CALTECH, CERN and CENIC set a Land Speed Record of 184,877 terabit-meters per second for multiple IPv4 streams. The path for the record was between Geneva and Los Angeles over the LHCnet, NLR, Abilene and CENIC backbones. More information about the record is available at http://dnae.home.cern.ch/dnae/lsr4-nov04/. 
The end systems were Dual Opteron 250 machines (2.4 Ghz) with S2io Xframe 10 Gigabit Ethernet Adapter Network Interface Cards. The operating system was Linux kernel 2.6.9 with FAST TCP enabled and the transferring application was Iperf.
The system was tuned to increase socket and TCP buffers, disable TCP timestamps and SACK, set txqueuelen and the MTU and other alterations. The details are available from http://dnae.home.cern.ch/dnae/lsr4-nov04/s2io_perf.sh-GE and http://dnae.home.cern.ch/dnae/lsr4-nov04/sysctl_s2io.conf.huge-GE. 
7.3.3 University of Tokyo/WIDE/Chelsio 
In December 2004, the University of Tokyo, Chelsio and the WIDE (Widely Integrated Distributed Environment) Project set a Land Speed Record of 216,300 terabit-meters per second. The path for the record was from Tokyo to Tokyo via Amsterdam and New York over the IEEAF, CAnet*4, Surfnet, Abilene and JGN2 networks. Detailed information is available at http://data-reservoir.adm.s.u-tokyo.ac.jp/lsr-20041225/. 
The end systems were  Dual AMD Opteron 248 machines (2.2GHz) with 1G byte of RAM each and the  Chelsio T110 (10GBASE-SR) Network Interface Card with TCP offload engine (TOE) support enabled. The operating system was Linux kernel 2.6.6 and the transferring application Iperf.
As well as using the TCP offload engine, the system was further tuned to alter the congestion window size, buffer size, size of queue, and Ethernet frame size. Flow control was also used.
8 Conclusions and further work
As stated in the introduction, this document is part of a wider group of resources designed to get the best performance and quality of service available from end-to-end services. The information provided is currently of use to end-system users, administrators and designers but it is important that the process of information gathering and dissemination continues. A key part of the further work introduced in this document is the ongoing maintenance and growth of the PERT Knowledge Base, available at http://pace.geant2.net/cgi-bin/twiki/view/PERTKB/WebHome. This collection of information forms the basis of this guide, and its companion document, DS3.3.2 Current Good Practice for Campus Networks and is a resource for future revisions during the life of this Service Activity.  Feedback from end-users and ongoing experience in the Géant2 PERT contribute to the body of knowledge available.
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ACK
TCP acknowledgement packet
ASIC
Application-Specific Integrated Circuit
AIMD
Additive Increase/Multiplicative Decrease 
AQM 
Active Queue Management 
ATM 
Asynchronous Transfer Mode 
BDP
Bandwidth Delay Product 
CE 
Congestion Experienced 
CPU
Central Processing Unit
CSMA/CD 
Collision Sense Multiple Access/Collision Detection 
Cwnd
Congestion Window 
CWR
Congestion Window Reduced
ECE
ECN-Echo  
ECN
Explicit Congestion Notification
ECT 
ECN-Capable Transport
ECMP 
Equal Cost Multipath
EGEE 
Enabling Grids for E-SciencE
FDDI
Fiber Distributed Data Interface
FTP
File Transfer Protocol
HTTP
Hypertext Transfer Protocol
ICMP
Internet Control Message Protocol
IEEE 
Institute of Electrical and Electronics Engineers
IETF
Internet Engineering Task Force
IP 
Internet Protocol
IPDV
IP Delay Variation Metric
IPPM
IP Performance Metrics
LFN
Long Fat Network
MTU 
Maximum Transmission Unit
MDT
Multidata Transmit 
MSS
maximum segment size 
NREN
National Research and Education Network
OS
Operating System
PAWS
Protection Against Wrapped Sequence-number
PDU
Protocol Data Unit
PERT
Performance Enhancement & Response Team
Pmtud
Path MTU Discovery
POS
Packet Over Sonet
RCP
Remote Copy
RED
Random Early Detection 
RFC
Request For Comment, Technical and organisational notes about the Internet
RTP
Real-time Transport Protocol
RTT 
Round-trip time 
SACK
Selective ACKnowledgments
SCP
Secure Copy
SCTP
Stream Control Transmission Protocol
SMDS
Switched Multimegabit Data Service
SSH
Secure Shell
Ssthresh
Slow Start Threshold
SYN
TCP synchronisation packet
TCP
Transmission Control Protocol 
TOE
TCP Offload Engine
TTL
Time To Live
WIDE
Widely Integrated Distributed Environment
WLAN
Wireless Local Area Network
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