SGA2 JRA2 Network Services Development All-Hands Meeting - T6

David Schmitz

Leibniz Supercomputing Center

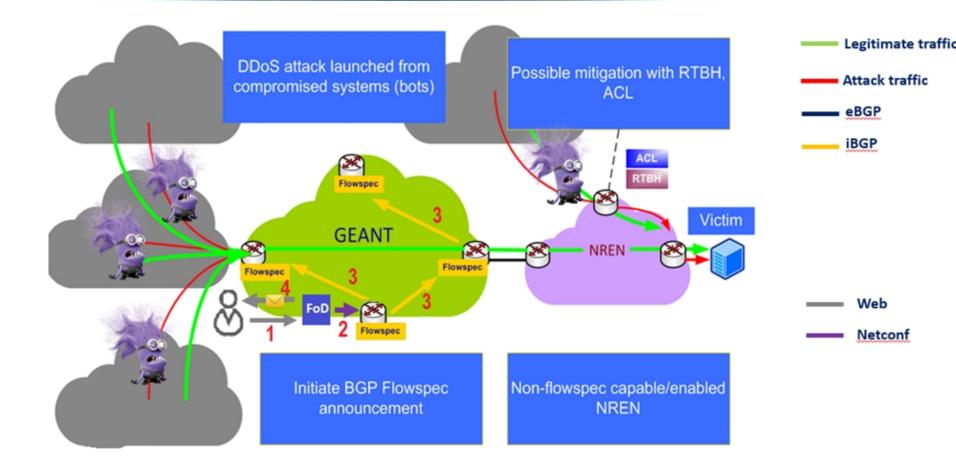
GÉANT GN4-2 JRA2 All-Hands Meeting, Malaga 01/02 June 2016

Outline

- Work items of T6
- Interworking between work items
- Interworking/Interfaces to other tasks/activities

Work Items of T6 (from DoW)

- FOD, FwaaS
- (Generic) Security Event Processing: mainly input for FOD/FwaaS
- Security Testbed: maybe no man power for this
- Certificate Transparency


FOD = **Firewall On Demand**

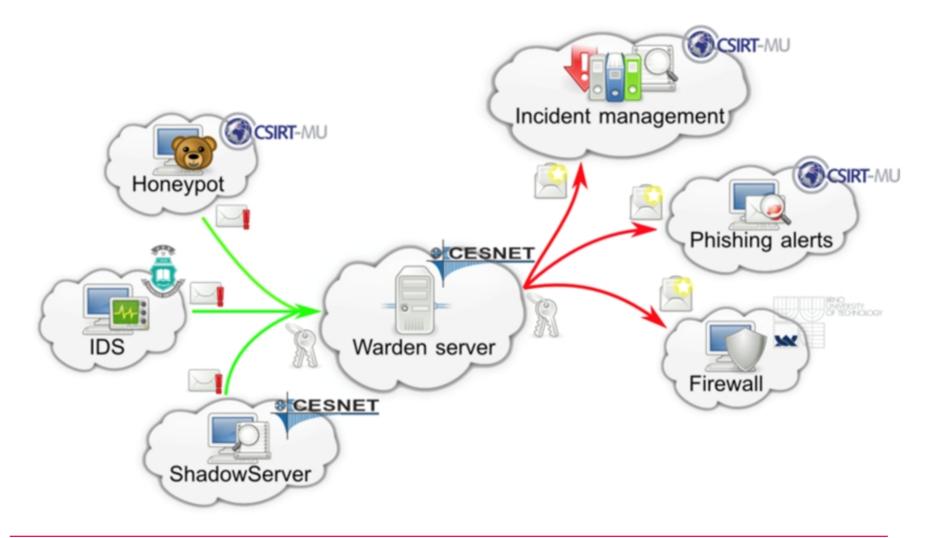
- Goal: DDOS attack mitigation
- How
 - Filter normally routed Geant IP traffic based on BGP Flowspec (RFC5575) rules
 - Web GUI for NREN NOCs
- Status: from SA3T1, productive in near-term
- To be enhanced:
 - Currently no automated rules, only manual entering
 - Currently only DROP rule supported

FOD = **Firewall On Demand (2)**

FwaaS = Firewall as a Service

- Evolve FOD further
 - Currently only DROP and IPv4: further reactions, IPv6
 - Currently only use for GEANT routers
 - Use for GTS projects, e.g. as GTS component (also relation to Sec Testbed)
 - Use SDN/Openflow for more flexible filtering
 - Automated rule proposal (see next work item)

- Generic event processing framework
- But used in particular for input of FwaaS
- Existing or projected components (CESNET)
 - Warden: Event hub for alert/event sharing
 - Rep(utation)Shield: Estimation of reputation of network ntities, e.g. IP address (spaces)


Generic Security Event Processing: mainly input for FwaaS - Warden

- Event hub for alert/event sharing
- Uses IDEA format (https://idea.cesnet.cz/en/index)
- Receiving events from different sources: e.g.
 - GEANT NSHaRP (Network Security Handling and Response Process)
 - NREN alert systems
 - Security Testbed (next work item)
- Distributing received events to different listeners: e.g.
 - RepShield

(https://warden.cesnet.cz/)

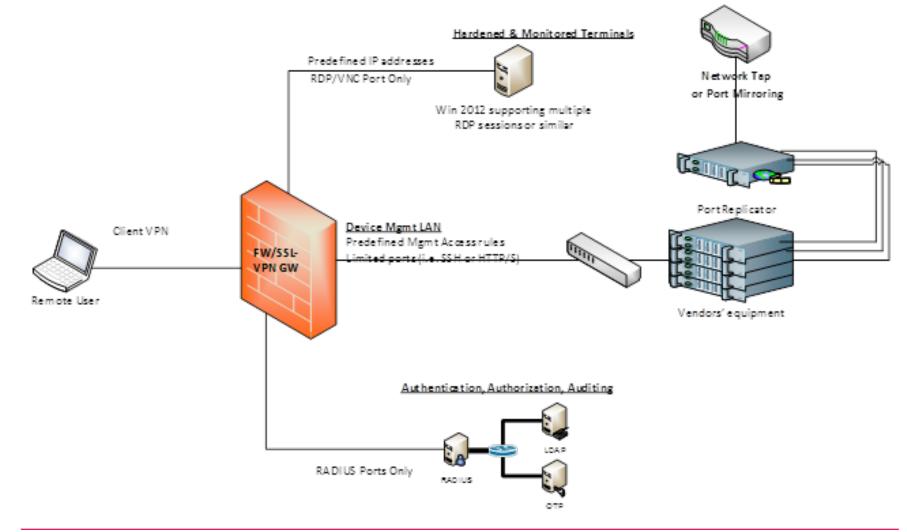
Generic Security Event Processing: mainly input for FwaaS - Warden (2) GÉANT

Networks • Services • People *www.geant.org*

Generic Security Event Processing: mainly input for FwaaS -Rep(utation)Shield

- Analyzing alerts/events
- Correlating with various other information sources
- Estimation of Reputation Score for network entities, e.g.,
 - IP address
 - Network (IP prefix)
 - AS
 - Domain
- Reputation Score: probability and severity of future attacks
- Use as input for proposing FOD/FwaaS rules

(https://www.cesnet.cz/wp-content/uploads/2015/12/Reputation-Shield-BARTOS.pdf)


Security Testbed (1)

- Idea inherited from GN4P1 SA3T1
 - Give vendors tap port access of GEANT IP traffic to test new security appliances
 - Get to know interesting security products
 - Get back current security events: for event processing
- Legal Issues, but idea interesting, especially when performed internally by GEANT, NRENs, institutions

Security Testbed (2) - Architecture

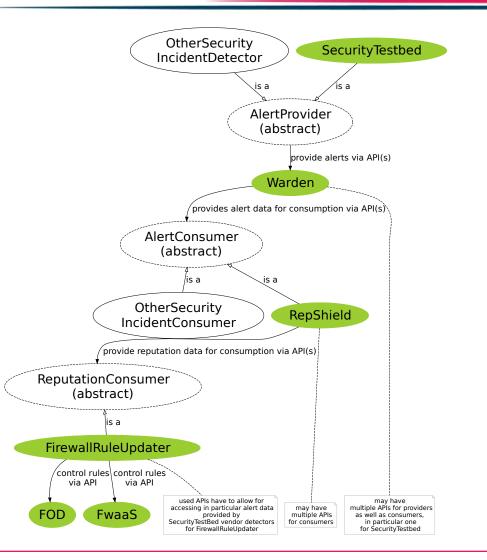
Networks • Services • People *www.geant.org*

Security Testbed (3) - Potential Further ideas

- Use for security education
- Test security threats in isolated environment
- "Testing version security testbed" (CESNET)
 - Provide referential toolset for security detecting (operational in CESNET)
 - Open-source, Easily deployable by NRENs (maybe using GTS)
 - Share generated events via Warden
 - Compare results of detection with other 3rd-party detectors
- Currently no man power,
- But some open-source tools already exist

Certificate Transparency

- For verifying certificates by CAs, domain owner, end users (web browser) (RFC 6962)
- Identifying fraudulent and revoked certificates
- Existing work performed by NORDUnet
- Continued in phase2


Interworking of the Work Items

- Security Testbed, and other information sources produce security events
- Warden receives and centrally distributes them, especially to RepShield
- RepShield analyzes and enhances them with info from other sources
- And estimates Reputation Score of IP addresses (and address ranges)
- Reputation info is used to propose FOD/FwaaS rules
- FOD/FwaaS users can accept/decline them
- (Potentially: Include events from Certificate Transparency Log for rule generation)

GN4P1 SA3T1 Security Architecture

Based On

- Defined Scenario and
- Derived Requirements

(in deliverable GN4P1 SA3-T1: D7.1 Multi-Domain Service Security Architecture)

Networks • Services • People *www.geant.org*

T6 Team

- FOD*/FwaaS
 - Evangelos Spatharas* (GEANT)
 - Nino Ciurleo (GARR)
- Event Processing: Warden*, RepShield*
 - Tomas Cejka (CESNET)
 - Vaclav Bartos* (CESNET)
- Certificate Transparency+
 - Linus Nordberg (NORDUnet)
 - Magnus Ahltorp (KTH)
- David* (LRZ)

*: already in GN4P1 SA3-T1 +: already in GN4P1

(Potential) Interworking/Interfaces to other tasks (1)

- T1: clearly defined connection-oriented network services (including multi layer/domain/virtual topology)
 - To be protected/supported by FwaaS
 - To be used in security events (IDEA format)
- T2: clearly defined generic services and their support/management functions (in general)
 - To be protected/supported by FwaaS
 - To be used in security events (IDEA format)

(Potential) Interworking/Interfaces to other tasks (2)

- T3
 - As a user of GTS: Security Testbed
 - New (virtual) components of GTS: e.g. FwaaS instance, event processing components
 - Securing GTS itself by FwaaS
- T4
 - Possibly: provide basic measurement information for generating security events
- T5
 - Provision function for management software to users, e.g., to be applied for CESNET's event detection software for 'Testing Version Security Testbed' to NRENs

(Potential) Interworking/Interfaces to other activities

- JRA1
 - SDN/Openflow for enhanced, flexible FOD: per testbed project, per user group
- SA1 (also in general for whole JRA2)
 - Operating (and needed education for this) of security (management) functionality in services
- SA2 (also in general for whole JRA2)
 - Introduction and CSI of security (management) "services"/functionalities, e.g. FwaaS
 - Operating (and needed education for this) of security (management) functionality in services

GEAN et ading to the GN4 Phase 1 project.

Further Questions To Discuss (regarding general service notion used in JRA2)

 Should (connection-oriented network) service model definition include security (management) functionalities right from start?

Examples for functionalities (provided via respective virtual components):

- FwaaS functionalities
- Event collection/distribution functionalities
- Reporting functionalities
- What QoS Parameters/KPIs are defined regarding security (management) functionalities and when?
- How is/are management access point(s) defined regarding security management and when?
- How are defined security (management) functionalities mapped to realizing components/used sub services?

GEAN et ading to the GN4 Phase 1 project.

Existing SW Components - FOD

Existing SW Components - Security Detection Referential Toolset

Existing SW Components - CT

GEAN et ading to the GN4 Phase 1 project.

Multi-Domain Service Security Architecture - Requirements for integration of existing security

		monitoring solutions	
	ID	monitoring solutions	Weight
	AS-1	Definition of an exchange	3
		format for security alert	
		sharing	
	AS-2	Capabilities to filter,	2
		anonymise or	
		pseudonymise alerts before	
		forwarding	
	AS-3	Procedure to subscribe	3
		before forwarding and	
		mechanism to authenticate	
		alert providers	
	AS-4	Mechanisms to process	3
		alerts provided by various	
		security solutions and map	
		them to the defined	
		exchange format	
	AS-5	Real-time, push-based	3
		forwarding of security	
Ν		information to central	
V		aggregation component	

Multi-Domain Service Security Architecture - Requirements for Security Testbed

ID	Description	Weight
ST-1	SPAN port or tape device to	3
	forward network traffic to	
	monitoring solutions	
ST-2	Replication of traffic to allow	3
	up to 20 vendors	
ST-3	Capabilities to filter certain	3
	traffic (NREN?s opt-out) or	
	forward filtered traffic to	
	dedicated security solutions	
ST-4	Provision of secure, multi-	3
	tenant access allowing	
	vendors to access their own	
	security products	
ST-5	Definition of a procedure for	2
	initial auditing of the	
	provided security solution	
	before connecting it to the	
	security testbed as well as	
_ N	re-auditing on a regular	
v	basis and after major	

Multi-Domain Service Security Architecture - Requirements for Security Information and Event

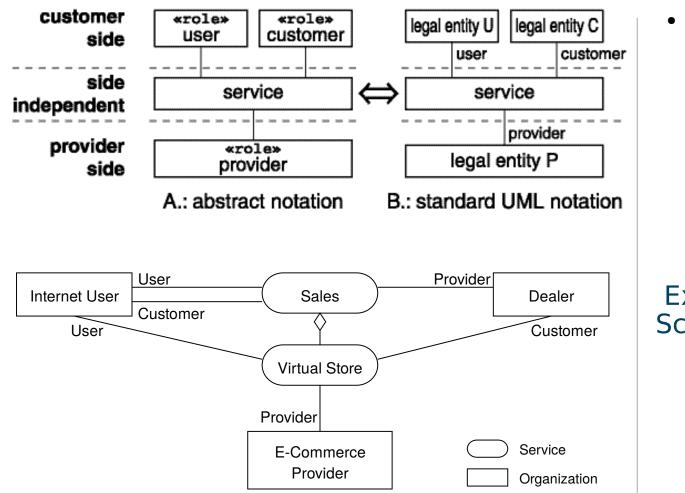
	Sharing System	
ID	Sharing System Description	Weight
SI-1	Provide a central system to	3
	which security alerts raised	
	by detection of malicious	
	activities can be forwarded	
SI-2	Definition of a database	3
	scheme to store security	
	alert information on this	
	central system	
SI-3	Provide pre-processing	2
	components that allow	
	filtering,	
	anonymisation/pseudonymis	S
	ation, event parsing and	
	extraction of relevant fields	
SI-4	Specification and	1
	implementation of a web-	
	based configuration	
	interface for authenticated	
-	users (CERT members,	
N	administrators)	

Multi-Domain Service Security Architecture - Requirements for Reputation Scoring

ID	Description	Weight
RS-1	Specification and	3
	implementation of report	
	normalisation, aggregation	
	and enrichment components	S
RS-2	Definition and	3
	implementation of a	
	reputation-scoring method	
RS-3	Definition of aging algorithm	2
	for reputation	
RS-4	Definition of automated	2
	adaptation algorithm	
	reflecting the evolving threat	t
	landscape	
RS-5	Specification of API into	3
	reputation database	_
RS-6	Specification of a web	2
	interface for manual	
	interaction and access to	
_ N	data stored in the reputation	
и	database	

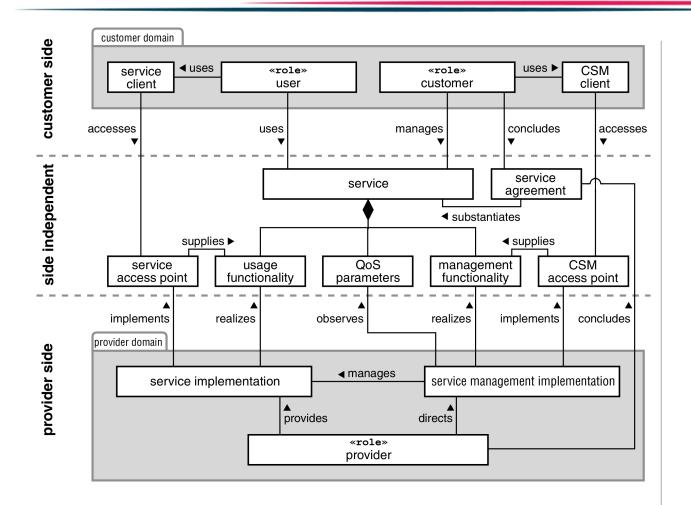
Multi-Domain Service Security Architecture - Requirements for Automated Response

	Description	Weight
AR-1	Automated response system should provide	3
	different, active and passive	
	mechanisms, e.g. mail	
	notification,	
	(semi-)automated blocking,	•
AR-2	Role-based access control	3
	to the system and definition of fine-grained capabilities	
	for users	
AR-3	Multi-tenancy to ensure that	3
	successfully authenticated	
	users can trigger automated	l
	responses only for	
	networks/systems they are	
	responsible for	•
AR-4	Logging of user interaction	2
	with the system, e.g. trigger	
Ν	notification, activating filter rules,	
V	Tuico,	


Proposal: MNM Service Model

- Generic model for IT services
- Developed 15 years ago by MNM (Munich Network Management) Team
- Common view/terms between provider and customer/user
- Separate specification from realization
- Explicit notion of management vs. usage functionalities
- Covering whole service life cycle
- Allow for recursion: customer/user of service being provider for upper service
- Instantiation Methodology for concrete scenarios

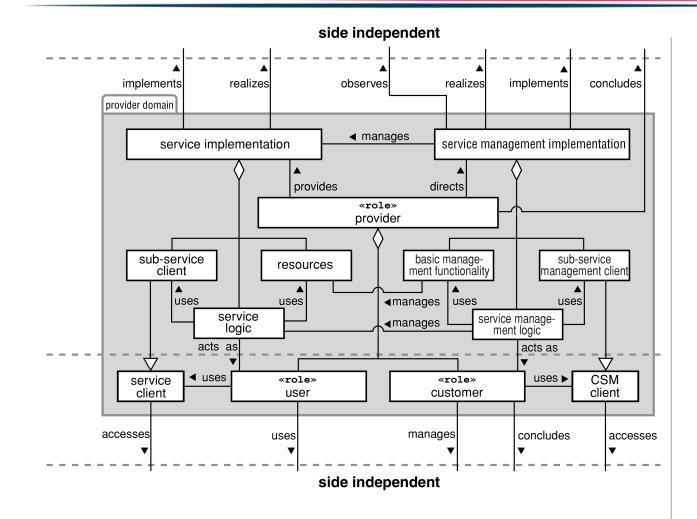
Proposal: MNM Service Model - Basic View



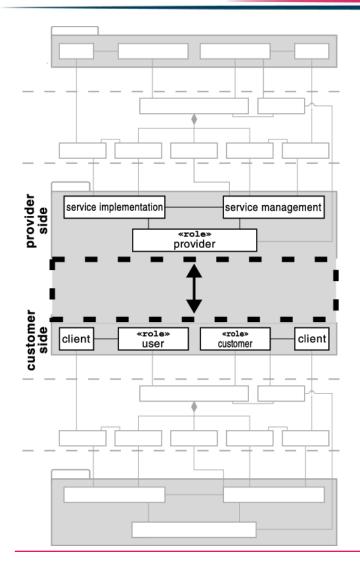
- Roles for proper service usage vs.
 management
 - User vs.
 - Customer

Example Service Scenario

Proposal: MNM Service Model -Service View



- Common view between user/customer and provider
- Only specification, no providerinternal realization
- Usage vs. Management functionalities


Proposal: MNM Service Model -Realization View

- Providerinternal view
- Separation between usage vs. management realization

Proposal: MNM Service Model -Recursive Application

Provided lowlevel service as sub service (part of realization) of high-level service

•

•

Provider of high-level service as customer/user of low-level service

Networks • Services • People www.geant.org

Proposal: MNM Service Model -Proposal (2001) of Classes for Management functionality

Life Cycle Phases	Design	Negotiation	Provisioning	Usage	Deinstallation
Design					
Contract Management					
Provisioning					
Accounting Management					
Problem Management					
Security Management					
Customer Care					
Usage					
Operation					
Change Management					
Deinstallation					

- Covering whole service life cycle
- Based on TOM (Telecom Operations Map)

Proposal: MNM Service Model -References

- M. Garschhammer, R. Hauck, H.-G. Hegering, B. Kempter, M. Langer, M. Nerb, I. Radisic, H. Roelle, and H. Schmidt. Towards generic Service Management Concepts - A Service Model Based Approach. In G. Pavlou, N. Aner- ousis, and A. Liotta, editors, Proceedings of the 7th International IFIP/IEEE Symposium on Integrated Management (IM 2001), pages 719-732, Seattle, Washington, USA, May 2001. IFIP/IEEE, IEEE Publishing.
- M. Garschhammer, R. Hauck, B. Kempter, I. Radisic, H. Roelle, and H. Schmidt. The MNM Service Model - Refined Views on Generic Service Management. Journal of Communications and Networks, 3(4):297-306, Dezember 2001.
- M. Garschhammer, R. Hauck, H.-G. Hegering, B. Kempter, I. Radisic, H. Roelle, and H. Schmidt. A Case-Driven Methodology for Applying the MNM Service Model. In R. Stadler and M. Ulema, editors, Proceedings of the 8th International IFIP/IEEE Network Operations and Management Symposium (NOMS 2002), pages 697-710, Florence, Italy, April 2002. IFIP/IEEE, IEEE Publishing.