

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

1

GÉANT Testbed Service (GTS)
User and Resource Guide

Version 4.1

June 2017

Document Code: <GN-16-001>

Authors:

© GEANT Limited on behalf of the GN4-2 project.

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation

programme under Grant Agreement No. 731122 (GN4-2).

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

2

Contents

1 Introduction 4

2 Testbed topology and resources 5

3 How to get started 6

3.1 Access to GTS 6

3.2 Login to the GUI 6

4 Working in the testbed environment 9

4.1 Defining a testbed with DSL 10

4.2 Reserving testbed resources 13

4.3 Activating testbed resources 15

4.4 Setting reservation windows 17

4.5 Deactivating testbed resources 18

4.6 Releasing testbed resources 19

4.7 Querying details 20

4.8 Internet Access Gateway (IAGW) 23

4.8.1 Internet connectivity 23

4.8.2 VPN access 23

4.8.3 Persistent Shared Project Folder 31

4.9 Example: Working with GTS OpenFlow switches (VSI) 32

5 Help and Support 39

6 Introduction to Domain Specific Language 40

6.1 DSL in GTS 40

6.2 Quick Start 40

Appendix I: Resource Guide 44

I. Composite types 44

II. Host 45

III. Link 47

IV. VSI 48

V. External Domain 50

VI. Bare Metal Server (BMS) 52

i. Introduction to Bare Metal Servers 52

ii. PERC H710 Mini RAID configuration 54

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

3 3

iii. PERC H730 Mini RAID configuration 58

iv. Installation of OS on BMS 59

VII. BNF Grammar 61

Appendix II: Additional examples 62

I. Examples: One host 62

II. Example: Two hosts linked together 63

III. Example: Triangle between three locations 65

IV. Example: Three triangles built using DSL code iterations 67

V. Example: Two OpenFlow switches (VSI), each with two ports, one host and one

separate controller 68

VI. Example: One host directly connected with a Bare Metal Server 70

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

4 4

1 Introduction

Welcome to the new GÉANT Testbeds Service (GTS)! This new production service gives you the opportunity to

setup your own customized experimental platform in order to be able to test novel concepts in networking and

telecommunications.

This new service is made available in several releases and will grow further over time. This user guide describes

features available in GTS Version 4.1.

The service allows you to set up an isolated customized packet-based testbed environment and enables you to

conduct your particular experiment over resources in a real network without having to worry about impacting

other testbeds or production services. After a short registration process a first time user has access to a pool of

virtualized resources that can be programmed and reserved using a Domain Specific Lanmole (DSL) description

or selected via a graphical user interface. An Internet Access Gateway (IAGW) provides the possibility to load

software into the testbed. The system also allows the selection of an external interface as a resource whenever

a testbed needs to be linked to external nodes.

The GTS facility is intended for use by researchers who are part of the GÉANT Community and its associated

OpenCall projects [FAR-2014, NAE-2016, SZE-2014]. Other researchers will be provided access on a space

available basis.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

5 5

2 Testbed topology and resources

Currently, GTS allows you to select resources from the following geographical locations: Amsterdam,

Hamburg, London, Madrid, Milan, Paris and Prague (see

Figure 1). All these locations are sitting on the GÉANT backbone network point of presences. Later on, it is

expected that new resource locations will be available outside of GÉANT, in the NRENs or other peer networks’

domains.

Available resources in Version 4 of GTS include:

 Hosts (VMs with data ports and integrated monitoring in the GTS GUI; implemented using OpenStack)

 Virtual circuits (Ethernet pipe with data ports; implemented using Network Service Interface (NSI) with

10 GE connectivity)

 Virtual Switch Instances (VSIs) (fully virtualized OpenFlow switch instances (OpenFlow Specification 1.3)

with data ports)

 External domain interfaces

 Bare Metal Servers (BMSs) (single-tenant physical server)

The detailed description of the resources, their parameters and default attributes can be found in the Appendix I.

Figure 1: GTS physical infrastructure topology1.

1 Please note: As of GTS v4 Ljubljana is no longer available.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

6 6

3 How to get started

This section describes the steps you need to complete until your testbed setup is ready for use.

3.1 Access to GTS

The GTS front-end web Graphical User Interface (GUI) is available at: https://gts4.geant.net. NOTE: Whenever

you get the message “The service is currently undergoing maintenance, and may not be fully functional. Check

back later!” it practically means that we are upgrading and verifying the software/hardware functions of the

environment. The system may not be fully functional while the notice is displayed.

3.2 Login to the GUI

The GUI is the primary user interface of GTS but there are other means of accessing the testbed services. The

GUI is built on a restful API in front of the GTS core software. In later versions of the software, the API will also

be open for application designers and system integrators.

First time users have to register by clicking on ‘Register’ and then sending an email to gts-

operations@lists.geant.org (Figure 2); users that are already registered can login with their user names and

passwords as shown in Figure 3. When you first register, please describe briefly in the email which project name

you would like to use, describe the project and list approximately what type of resources and what quantities you

expect you will be using. Also please define your username and provide your real name, e-mail address. By

creating or requesting an account you also agree to the Terms of Service of GTS.

Figure 2: First-time registration

https://gts4.geant.net/

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

7 7

Figure 3: Login as registered user

Once you are logged in you have access to the VPN information by clicking on the blue information icon next to

your project’s name (Figure 4). Logout of your project using the dropdown menu below your project name (Figure

5). This dropdown menu also gives you access to your user profile and allows updates if needed (Figure 6).

Figure 4: Project and VPN related information

Figure 5: Log out of the project via the dropdown menu next to the project’s name

In the current implementation of Version 4.1, new user registrations always end up in new projects. If you wish

to add multiple users to your single (already existing) project, please contact the GTS service managers.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

8 8

Figure 6: Update or reset user profile

During a login process you may find a disclaimer that indicates that the testbed facility is currently under

maintenance and its use may be limited (Figure 7).

Figure 7: Disclaimer

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

9 9

4 Working in the testbed environment

The GTS GUI acts as an agent to the testbed resources and allows a user to build and monitor an isolated domain

of interacting resources, i.e. a user’s testbed is independent from other users’ testbeds and can be operated

without any impact on other testbed environments.

After logging in to GTS the user builds a testbed description for the Testbed Control Agent (TCA). In a next step,

the testbed description document is fed to the Resource Manager (RM) which in turn parses the document,

allocates resources, and sets up the testbed control plane. The testbed is then activated and the user controls it

via the GUI.

For example, the user may decide to define router nodes at first and may then browse and select a set of PC

resources to act as the end systems. Each of these resources has data plane ports defined as integral

components of the resource. The user must then define the connectivity among these nodal resources by

indicating how the various nodal resources are to be interconnected via these network links. At the end the user

saves the testbed description to the project’s repository and submits the testbed description to the Service Engine

for processing. For some experiments it may be necessary to select virtual resources that are geographically

apart or at certain locations. In such use cases users may select a resource’s location from the list of available

installations.

The GTS service engine analyzes the testbed description for any obvious errors or omissions, and finding nothing

critical, the Service proceeds to locate and reserve the indicated resources. Note: this is an iterative process –

the researcher may have only defined a partial set of resources and wishes to reserve these first, where upon

the user will then define additional resources to be incorporated into the testbed. Upon successfully reserving all

resources, the researcher requests the GTS Service Engine to instantiate the testbed. As resources are initialized

and brought into service, control of those resources are passed to the researcher’s own testbed control agent.

Instantiating resources is complete, when the selected resources have been activated.

The user can program the desired testbed environments and reserve resources using a Domain Specific Langue

(DSL) description or select resources via the GUI (for more information on DSL please see Chapter 6). This

reservation of resources also allows a user to specify start and end times during when these resources should

be activated and made available for experimentation. Only when all requested resources are available the

reservation process completes with success.

Reserved resources can then be activated by the user and at this time all resources will actually be allocated.

At some time during an experiment a user may wish to deactivate the resources, but keep the reservation of

resources valid for use at a later point in time. Once an experiment is finished and the project is no longer needed,

the user should also release all resources so that resources can be made available to other projects. Resources

can also be queried for status information.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

10 10

4.1 Defining a testbed with DSL

After you have logged in as a registered user you are now able to upload Domain Specific Language (DSL)

descriptor files that set up the type of experimental environment that you would like to have in your testbed (for

more information on the DSL please see Chapter 6).

You can define your own resource types or classes with DSL code (for example: an OpenFlow switch connected

to a controller). To add a DSL file, please click on “Types” (top navigation menu, Figure 8) and then select “Add”

(Figure 9) which will open up a window (see Figure 10) where you can browse through your files to upload an

already existing DSL file. Click on ‘Submit’ to finish your testbed description.

Figure 8: Select “Types”

Figure 9: Add “Type”

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

11 11

Figure 10: Submitting DSL code via an already existing file

Another option is to configure your testbed by filling in your DSL description using the editor window of the GUI

(Figure 11): Just type in your code and click on ‘Submit’.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

12 12

Figure 11: Submitting DSL code directly

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

13 13

4.2 Reserving testbed resources

After submitting your DSL code the system takes you back to the ‘Types’ screen and you will see the new testbed

type you have added to your project (Figure 12)

Figure 12: Added testbed type

When you click on the type’s name you have read-only access to your DSL code. For a created testbed type you

can choose the following actions:

 You can RESERVE the testbed by clicking on the green button.

 The red button allows you to ‘Undefine’ or delete the type and the DSL file is dropped.

After you selected the green button to reserve your testbed you will see the following information on your screen

that lists your new resource type (Figure 13):

Figure 13: Reserved new resource type

You can expand the listed information to show you more details on the individual resource components that were

reserved as part of your new type by clicking on the ‘+’ sign next to the Provider ID on the left (Figure 14):

Figure 14: Listing of reserved resources

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

14 14

The reservation process is complete when your resources show the status ‘RESERVED’.

Note: In case you specify a certain location for a resource and your request cannot be granted because not

enough resources are available at that time at that location then your request may go through if you resubmit

your DSL without the specification of a location (if that is not a requirement for your experiment in some way).

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

15 15

4.3 Activating testbed resources

Before reserved resources can be used, they must be activated. Click on the green button on the right to start

the activation process (Figure 15).

Figure 15: Activate a resource

The activation of resources prompts the user to indicate a start time and end time. The activation can happen in

two ways:

1. If you specified your reservation time window (start time and end time) in your DSL, the resources will

automatically go from reserved state to active when the time window starts (Figure 16). During that

defined time window (i.e. when your reservation is valid) you can actually deactivate and activate your

resources as you wish.

2. If you did not specify a reservation window in your DSL, your reservation is valid starting from the current

time until practically forever. This will likely change in later versions of GTS! In this case you can activate

and deactivate your resources whenever your want.

Figure 16: Reservation start and end time

You can follow the status of your resources while it is changing from ‘RESERVED’ to ‘ACTIVE’ (Figure 17):

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

16 16

Figure 17: Activating resources

Figure 18: All resources are activated

For activated resources the status turns to ‘ACTIVE’ (Figure 18); please allow a few minutes for processing as

all resources are created dynamically and not just picked from an already existing pool.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

17 17

4.4 Setting reservation windows

This version does not allow the setting of specific start- and end times yet for activation and deactivation

processes. Simply select the provided default settings by clicking on them (Figure 19) (Please note: Closing the

window is not enough to choose the default values!):

Figure 19: Selecting default start- and end-times

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

18 18

4.5 Deactivating testbed resources

At some time during an experiment a user may wish to deactivate the resources, but keep the reservation of

resources valid for use at a later point in time. In other words: Deactivated resources are not released and

returned to other users until the experimenter actually releases the resources. Deactivated resources can be

returned to an active state by simply activating them again at any time during the experiment.

To deactivate a resource, simply click on the yellow button on the right (Figure 20):

Figure 20: Deactivation of a resource

The start- and end-time reservation window will pop up again where you can specify the time when your resources

are to be deactivated (in this version only available with default setting); select the (default) setting by clicking on

the line with the start and end times (closing the window is not enough!) and wait for the status of the resources

to change to ‘RESERVED’ again (Figure 21). But that does not mean that they are released (please see section

4.6 for more details); instead they remain reserved for the user to be available for the next activation process.

Figure 21: Selecting an end-time

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

19 19

4.6 Releasing testbed resources

Resources that are no longer of interest should be released so that these resources can be made available to

other projects and users.

Figure 22: Releasing resources

To release the testbed resource click on the red button on the right as marked in Figure 22.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

20 20

4.7 Querying details

The individual resources that were reserved for your testbed become visible when you click on the ‘+’ sign to the

left of the Provider ID of your resource (Figure 23); each resource can then also be accessed by clicking on its

link (Figure 24):

Figure 23: Obtaining details via Provider ID

Figure 24: List of individual testbed resources

By clicking on a resource you can also obtain more information on ports, locations as well as reservation start

and end times (Figure 25):

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

21 21

Figure 25: Details of a testbed resource, in this case details of a Host resource including statistics

To obtain a tree structure of your testbed resource and to see port adjacencies or adjacencies for external ports,

click on the Provider ID itself (Figure 26 and Figure 27):

Figure 26: Access to tree structure

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

22 22

Figure 27: Tree structure and port adjacencies

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

23 23

4.8 Internet Access Gateway (IAGW)

As a part of its creation, each project in GTS gets a separate broadcast domain. This broadcast segment is then

used to connect all VMs in your project regardless of their testbed and location. The segment will also host an

IAGW instance which provides your VMs with the basic Internet connectivity (DHCP and SNAT), VPN access

and a shared file system.

4.8.1 Internet connectivity

The Internet connectivity from your VMs is realized through preconfigured DHCP client on the first Ethernet port

(i.e. eth0). The rest of the ports (eth1, eth2, and so on) are not preconfigured and are there for point-to-point

links as specified in your DSL. So do not use eth0 to run tests in your testbed, this might break it!

DHCP server on the IAGW announces a private subnet range and the source network address translation (SNAT)

is used to enable VMs to reach the Internet.

4.8.2 VPN access

Because of the private subnet range and SNAT, VMs in your project are not exposed on the Internet. Port

forwarding and the floating public IP addresses are not supported at the moment and are considered for some

future versions of GTS. However, if you need a direct IP connectivity from your personal computer to any of the

VMs in your project, you can use the VPN functionality described in the following sub-sections.

4.8.2.1 VPN connectivity from Windows

For systems using Windows, set up a new VPN network connection via the Control Panel and its Network and

Internet options.

To set up the VPN use the IP address shown when you click on the blue ‘i’ icon next to your project name (Figure

28: VPN information and Figure 29: VPN IP addressFigure 28) and also the VPN user name and password you

defined during the initial project registration process.

Figure 28: VPN information

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

24 24

Figure 29: VPN IP address

To prevent Routing and/or Gateway problems on Windows you have to adjust some VPN network properties.

Right click on the name of the VPN network in the Open Network and Sharing Center:

Figure 30: Open Network and Sharing Center

Then choose Internet Protocol Version 4 (TCP/IPv4) from Networking Tab and click the Properties Button. The

TCP/IPv4 Properties will be displayed.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

25 25

Figure 31: TCP/IPv4 Networking

There click the Advanced Button and make sure that the checkboxes in the IP Settings Tab have the same

configuration like in Figure 31:

Figure 32: IP Settings for TCP/IPv4

Then repeat the same procedure for Internet Protocol Version 6 (TCP/IPv6) (see also Figure 31) until the IP

Settings Tab for Ipv6 is displayed. There the configuration has to be set as follows:

Figure 33: IP Settings for TCP/IPv6

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

26 26

For example, once you are connected via VPN, you can use programs like WinSCP or PuTTY to transfer files or

SSH to a testbed host. In order to do so, you need to access the console of the host that you would like to connect

to by clicking on the appropriate host (Figure 34) which will then provide a console link (Figure 35).

Figure 34: Accessing the console of a host

Figure 35: Console link

Click on the console link; you will then be prompted for user name and password. Look for the IP address provided

on the screen for eth0 (Figure 36); this is the IP address you should use for your file transfer program along with

user name and password. If you don’t see an IP address here, use the ifconfig command to find out the IP

address for interface eth0.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

27 27

Figure 36: IP address for eth0

4.8.2.2 VPN connectivity with Debian / Ubuntu

For a VPN connection to GTS using Debian / Ubuntu proceed with the following steps:

 Get into root environment

$ sudo su

 Switch into directory‘peers’

cd /etc/ppp/peers

 Setup up a VPN configuration file‘projectname’and adjust the values marked in red (Figure 37):

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

28 28

Figure 37: Adjust VPN configuration file

To find out the correct IP and user name that you should set in this VPN configuration file click on the

blue ‘i’ icon next to your project name (Figure 38) and use the values you set during your initial project

registration and then save the file.

 Figure 38: VPN information

 In the next step adjust the file ‘chap-secrets’ in directory /etc/ppp/ indicating your VPN user

name, your project name and VPN password that you set during your initial project registration (Figure

43):

Build VPN connection to GTS VPN Server

pty "pptp <VPN-IP> --nolaunchpppd --nobuffer --timeout 10"

GTS VPN - user name

name <VPN user name>

This command reconnects to GTS VPN server after a disconnect

persist

MTU value should be standard value

mtu 1400

used for scripts in ip-up / ip-down

ipparam <YOURPROJECTNAME>

Terminate after n consecutive failed connection attempts.

A value of 0 means no limit. The default value is 10.

maxfail 0

IMPORTANT: Do not use this option for the GTS VPN connection.

Otherwise all packets are routed over this connection.

Please comment it out:

#defaultroute

Some useful settings

remotename <YOURPROJECTNAME>

lock

noauth

nobsdcomp

nodeflate

#Require encrypt

require-mppe-128

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

29 29

Figure 39: Adjust file ‘chap-secrets’

 Then switch to the directory ip-up.d

cd ip-up.d/

 and set the project route with an executable file‘yourprojectname.route’(Figure 44)

Figure 40: Set project route with executable file

and make sure you use the network IP address of eth0 of your host. To find this IP address click on

the appropriate host (Figure 41) which will then provide a console link (Figure 42).

Figure 41: Accessing the console of a host

Figure 42: Console link

Secrets for authentication using CHAP

client server secret IP addresses

<VPN USER> <YOURPROJECTNAME> "<VPN PASSWORD>" *

#end

#!/bin/sh

#IMPORTANT: USe here the network IP of interface eth0 of your

GTS VM (NOT the VPN IP!)

if ["${PPP_IPPARAM}" = "<YOURPROJECTNAME>"]; then

 /sbin/route add -net <YOUR NETWORK IP>/24 add dev <PPP

INTERFACE NAME>

fi

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

30 30

Click on the console link; you will then be prompted for user name and password. Look for the IP address

provided on the screen for eth0 (Figure 36); this is the IP address you should set as <YOUR NETWORK

IP> in the file ‘yourprojectname.route’as shown in Figure 44.

In the file ‘yourprojectname.route’you also define the <PPP INTERFACE NAME>

(see Figure 40) as pppx where ‘x’ would be ‘0’ if you have no other VPNs defined (or else

would be incremented to the appropriate number, but please note: only count VPNs set up

with ppp, not VPNs set up with other clients such as OpenVPN).

 This file‘yourprojectname.route’should then be made into an executable file

chmod 700 yourprojectname.route

 To connect with the VPN use

pon projectname

 To disconnect the VPN use

poff projectname

 To test: Type

ifconfig

and look for your pppx with address 172.16.0.1 (Figure 43):

Figure 43: check for pppx

 and then check if you can ping your host, for example

ping –c 5 172.16.0.10

 if your ping does not work, check with

ip route show

if you have the following entry:

172.16.0.0/24 dev ppp0 scope link

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

31 31

4.8.2.3 VPN connectivity with OS X/macOS

Starting with macOS 10.8 (Sierra) Apple has dropped support for the PPTP VPN that GTS is using. To continue

using the VPN connection to your testbed with macOS 10.8, you need a 3rd party client. There are multiple clients

that support PPTP VPN, the GTS operations team has successfully tested the Flow VPN client

(https://www.flowvpn.com/download-mac/) on macOS 10.8.

4.8.3 Persistent Shared Project Folder

IAGW instance also acts as a read-write shared folder (SMB/CIFS share) for the project. This shared directory is

by default mounted on /home/gts/project-share but this can be easily disabled or changed for each VM

individually (just edit the appropriate line in /etc/fstab file). The folder is “project-persistent” in the sense that

activating or releasing a testbed will not have any effect on its content. Currently, a user can store up to 3GB of

data in this project-share.

To access this directory from your personal computer, you need to VPN to the project as described in one of the

previous sub-sections. This, for example, gives you the ability to easily “drag-and-drop” the content which then

becomes available to all hosts in your project. Figure 44 shows how this can be done from a Windows Explorer:

Figure 44: Accessing shared folder from Windows Explorer

The path used to access the shared directory from the Windows Explorer is \\172.16.0.254\share where

172.16.0.254 is the private IP address of the IAGW (the gateway address for the subnet announced via DHCP).

The content of the share is not accessible from the Internet.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

32 32

4.9 Example: Working with GTS OpenFlow switches (VSI)

This chapter guides you through a DSL example that setups an OpenFlow environment with two VSIs2 OpenFlow

switches, two hosts and one controller. In the end we will have a working OpenFlow network environment. The

complete DSL code is available on page 68 (“Example: Two OpenFlow switches (VSI), each with two ports, one

host and one separate controller”). Below we will explain in small parts the DSL code.

Step 1: Define the three hosts, one will act as the controller host

Three hosts are defined, one host will act as the OpenFlow controller. The other two hosts will act as testing

environment for our OpenFlow environment.

2 Please note that in GTS v4 OFXs are no longer available and are replaced with fully virtualized Virtual Switch
Instances (VSIs).

twoCorsaVSIController2Hosts {

 description = "Two corsa VSI each with 2 ports 1 host and a

controller"

 id = "twoVsiCorsaTst"

 host {

 id="host1"

 port { id="port1" }

 }

 host {

 id="host2"

 port { id="port1" }

 }

 host {

 id="controller"

 port { id="port1" }

 port { id="port2" }

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

33 33

Step 2: Define the two VSI OpenFlow Switches

In this section the two OpenFlow switches are defined in the DSL. Each switch has a number of attributes, like

the IP address of the controller port, the IP address of the controlling OpenFlow controller, the ports (including

logical numbers), etc. Please see the Error! Reference source not found. section in Appendix I: Resource

Guide for detailed information about the attributes.

 vsi {

 id="vsi1"

 location="LON"

 switchIPv4Addr="10.10.100.1"

 switchIPv4Mask="255.255.255.0"

 switchMode="hard"

 controller {

 ipv4="10.10.100.100"

 port="6653"}

 port {

 id="port1"

 logicalPort=1}

 port {

 id="port2"

 logicalPort=2}

 port {

 id="port9"

 mode="CONTROL"

 }

 }

 vsi {

 id="vsi2"

 location="LON"

 switchIPv4Addr="10.10.101.1"

 switchIPv4Mask="255.255.255.0"

 switchMode="hard"

 controller {

 ipv4="10.10.101.100"

 port="6653"}

 port {

 id="port1"

 logicalPort=1}

 port {

 id="port2"

 logicalPort=2}

 port {

 id="port9"

 mode="CONTROL"

 }

 }

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

34 34

Step 3: Connect the two hosts with the two switches

Now the two hosts need to be connected with their respective switches. This is done by adding a link for each

and connecting the endpoints of the links with adjacencies to the ports of the switches/hosts.

Step 4: Connect the controller host with the two control ports of the VSIs

Additionally you need to connect the two ports of the controller host with the controller ports of the two switches.

So you define two links and again use adjacencies to connect the endpoints of the links with the ports.

Step 5: Connect the two switches with each other

 link {

 id="vsi1vsi2"

 port { id="src" }

 port { id="dst" }

 }

 adjacency vsi1.port2, vsi1vsi2.src

 adjacency vsi2.port2, vsi1vsi2.dst

 link {

 id="h1vsi"

 port { id="src" }

 port { id="dst" }

 }

 link {

 id="h2vsi"

 port { id="src" }

 port { id="dst" }

 }

 adjacency host1.port1, h1vsi.src

 adjacencyvsi1.port1, h1vsi.dst

 adjacency host2.port1, h2vsi.src

 adjacency vsi2.port1, h2vsi.dst

 link {
 id="controllervsi1"
 port { id="src" }
 port { id="dst" }
 }

 link {
 id="controllervsi2"
 port { id="src" }
 port { id="dst" }
 }

 adjacency controller.port1, controllervsi1.src
 adjacency vsi1.port9, controllervsi1.dst
 adjacency controller.port2, controllervsi2.src
 adjacency vsi2.port9, controllervsi2.dst

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

35 35

Don’t forget to close the surrounding “twoCorsaVSIController2Hosts {“ block with a “}”.

Step 6: Configuring the controller instance

Once you have reserved your testbed, activate the resources and make sure that all resources are marked as

‘ACTIVE’.

 find your controller in the list of resources

 click on the controller in order to get a link to its console (as you would do to get access to the console

of any VM; see Figure 45, Figure 46, compare also with Figure 42)

Figure 45: Access to controller VM

Figure 46: Link to controller console

 at the console you will be prompted for your user name and password

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

36 36

 at the moment it is still necessary to manually configure the interfaces of the controller (in later versions

of GTS it will be possible to simply set this via the GUI); this is because GTS currently does not support

port mapping.

 please note: eth0 should NOT be used, as it is currently reserved for internal processes!

 configure the eth1 and eth2 interfaces of controller (as already defined in the DSL example):
$ sudo su

ifconfig eth1 up 10.10.100.100 netmask 255.255.255.0

 # ifconfig eth2 up 10.10.101.100 netmask 255.255.255.0

and check for incoming ARP packets on both interfaces with
tcpdump –i eth1
tcpdump -i eth2

You will see the incoming echo request from the VSI like this:
#16:49:58.702223 IP 10.10.100.1.59938 > 10.10.100.100.6653: Flags [S], seq

688712374, win 26880, options [mss 8960,sackOK,TS val 1019200571 ecr 0,nop,wscale

7], length 0 i.e. a VSI with IP addresss 10.10.100.1 requests IP 10.10.100.100

 open the interfaces configuration file with your editor
vim /etc/network/interfaces

 add the following entries to the file:
auto eth1

iface eth1 inet static

address 10.10.100.100

netmask 255.255.255.0

network 10.10.100.0

auto eth2

iface eth2 inet static

address 10.10.101.100

netmask 255.255.255.0

network 10.10.101.0

 start and stop both interfaces with
ifdown eth1

ifup eth1

ifdown eth2

ifup eth2

 check if you can ping both switches
ping –c 5 10.10.100.1

ping –c 5 10.10.101.1

Step 7: Install ONOS as OpenFlow controller

 add and install the dependencies required for ONOS
$ sudo add-apt-repository ppa:webupd8team/java

$ sudo apt-get update -y

$ sudo apt-get install git zip oracle-java8-installer oracle-java8-set-

default python2.7 python2.7-dev -y

 download and compile ONOS
$ git clone https://github.com/opennetworkinglab/onos.git ~/onos

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

37 37

$ cd ~/onos

$ touch -f ~/.bashrc

$ echo "export ONOS_ROOT=$PWD" >> ~/.bashrc

$. ~/.bashrc

$ tools/build/onos-buck build onos --show-output

 Run ONOS

$ tools/build/onos-buck build onos --show-output

$ export ONOS_APPS=drivers,openflow,proxyarp,mobility

$ tools/build/onos-buck run onos-local -- clean debug

 Press Ctrl+D+A to detach from the running screen session, now we connect ONOS to the running
server

$ tools/test/bin/onos localhost

Change OpenFlow port (if required, to match that from the DSL)

onos> cfg set

org.onosproject.openflow.controller.impl.OpenFlowControllerImpl

openflowPorts 6653

 Now that the basic setup of ONOS has been finished, let’s configure ONOS so that the two hosts can
connect to each other. We do this by using manual intents in ONOS

 First check that the two VSI switches are connected to ONOS
onos> devices

id=of:000026fa26251242, available=true, local-status=connected 14s ago,

role=MASTER, type=SWITCH, mfr=Corsa, hw=CDP2100-A00, sw=corsa-ovs-datapath

1.5.71, serial=None, driver=default, channelId=10.10.100.1:52516,

managementAddress=10.10.100.1, protocol=OF_13

id=of:00005a5efef9e344, available=true, local-status=connected 13s ago,

role=MASTER, type=SWITCH, mfr=Corsa, hw=CDP2100-A00, sw=corsa-ovs-datapath

1.5.71, serial=None, driver=default, channelId=10.10.101.1:60386,

managementAddress=10.10.101.1, protocol=OF_13

 Now setup the point-to-point intents, we need to cover all the connections between the switch ports. So

you need to get the two OpenFlow ids from the devices command above and add intents between

the two ports on each switch
onos> add-point-intent of:000026fa26251242/1 of:000026fa26251242/2

onos> add-point-intent of:000026fa26251242/2 of:000026fa26251242/1

onos> add-point-intent of:00005a5efef9e344/1 of:00005a5efef9e344/2

onos> add-point-intent of:00005a5efef9e344/2 of:00005a5efef9e344/1

Step 8: Assign IP addresses to the two hosts and test the network connection

 We’re almost finished now, we just need to assign IP addresses to the two hosts and test the network
connection by using the ping command.

 Login to host1 and execute the following commands
$ sudo bash

ifconfig eth1 up 192.168.0.1 netmask 255.255.255.0

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

38 38

 Login to host2 and execute the following commands
$ sudo bash
ifconfig eth1 up 192.168.0.2 netmask 255.255.255.0

 Congratulations, you’ve now setup your own OpenFlow environment in GTS. You should be able to
ping host2 from host1 and vice versa. So execute the following command on host1 to check your
network connection that was established with the help of OpenFlow
$ ping -c 5 192.168.0.2

PING 192.168.0.2 (192.168.0.2) 56(84) bytes of data.

64 bytes from 192.168.0.2: icmp_seq=1 ttl=64 time=32.3 ms

64 bytes from 192.168.0.2: icmp_seq=2 ttl=64 time=0.752 ms

64 bytes from 192.168.0.2: icmp_seq=3 ttl=64 time=0.692 ms

64 bytes from 192.168.0.2: icmp_seq=4 ttl=64 time=0.667 ms

64 bytes from 192.168.0.2: icmp_seq=5 ttl=64 time=0.696 ms

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

39 39

5 Help and Support

For help and support please contact

 GÉANT Operations Centre

mailto: gts-operations@lists.geant.org

 phone: +44 1223 866140

You also find this support information by clicking on ‘About’ at the bottom of the GTS home page (Figure 47).

Figure 47: Access to support

In case you forgot your password, you can use the password hash calculator at
https://www.dailycred.com/article/bcrypt-calculator to generate a hash for your new password (use 10 rounds for
the hash generation). Please then send us your generated hash and we will update your account.

Additional information and training videos are available at
https://www.geant.org/Services/Connectivity_and_network/GTS/.

mailto:gts-operations@lists.geant.org
https://www.dailycred.com/article/bcrypt-calculator
https://www.geant.org/Services/Connectivity_and_network/GTS/

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

40 40

6 Introduction to Domain Specific Language

6.1 DSL in GTS

GTS uses its own Domain Specific Language (DSL) to describe topologies. It is used by users to specify their

requests, but also by GTS service to represent the allocated topology that conforms to users' requirements. DSL

not only allows defining requests, but also offers Groovy [GRO-2014] programming language syntax that eases

up the process of specifying scalable, complex topologies. In this section only DSL syntax is described. Readers

should get familiar with Groovy programming language grammar if they want to use programming language

features. For basic request definition knowing only DSL syntax is enough. The section is divided into two parts:

Quick start and DSL grammar definition. The first offers introduction with examples where after five minutes users

will know all concepts and should be able to define basic requests. The latter provides information about all

resource types, their parameters and BNF (Backus–Naur Form) grammar of the DSL.

6.2 Quick Start

For every virtual resource there is a resource class or type, called a ‘template’ that defines all possible attributes

of that resource. The process of creating a resource instance from this class template is referred to as

‘instantiation’. In a testbed, a researcher can instantiate several instances of a resource and distinguish them by

assigning each resource instance a unique name [DEL-D61].

Each resource class has

 a class name / an identifier of that class (not instance!) (name cannot start with a digit)

 external ports (where each port has a port name and a set of attributes for those ports)

 class attributes

 internal resources

 adjacencies among internal resources

 and a set of resource control primitives defined for that resource class.

Resources can be either atomic or composite. Atomic resources denote virtual resources that will be allocated

for the user. Those that are composite are logical containers of other resources. This feature allows to define

scalable, complex topologies, because composite types form reusable building blocks that can be combined

together.

Before going into formal BNF grammar definition let's start with a simple example to get familiar with the DSL

syntax. The code snippet below is a definition of a type containing one host. The type called HostWithTwoPorts is

a composite that contains one host. The host has two interfaces called ports p1 and p2. Each resource instance

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

41 41

definition consists of a resource type name and a set of parameters and ports specified in curly braces. The

parent-child relation is specified by defining the resource instance within the definition of the composite resource.

In this example the host has HostWithTwoPorts composite type as a parent.

 Let's imagine a more complex topology where we have three hosts connected to each other forming a triangle.

We will reuse HostWithTwoPorts type to specify three hosts. Each resource can be connected with another

type HostWithTwoPorts {

 description = "Host that has two ports."

 id = "Host that has two ports"

// This is a comment.

 host {

 id = "host"

 port { id = "p1"}

 port { id = "p2"}

 }

}

type Triangle {

 description = "Triangle using PRG, AMS and BRA hosts."

 id = “Triangle”

 host { id = "h1"

 description = “PRG HostWithTwoPorts” //

 location = "prg" // location for VM, optional

port { id = "p1"}

 port { id = "p2"}

 }

 host { id = "h2"

descripnion = “AMS HostWithTwoPorts”

 location = "ams"

port { id = "p1"}

 port { id = "p2"}

 }

 host { id = "h3"

 description = “BRA HostWithTwoPorts”

 location = "bra"

port { id = "p1"}

 port { id = "p2"}

 }

//Note. Do not define Links that is not used. It will cause error.

 link { id = "l1"

 description = “Link between h1 and h2”

//Note. Ports for links have reserved names src and dst. Do not use for Links other names.
port { id = "src"}

 port { id = "dst"}

}

 link { id = "l2" … }

 link { id = "l3" … }

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

42 42

resource via a transport resource called link. Links have exactly two ports called src and dst denoting source and

sink. In links other port names exept “src” and “dst” are prohibited. We need three hosts and three links.

The id parameter in each resource is a user defined identifier that is unique only within the given DSL. It does

not have to be a globally unique identifier. It helps users specifying properties and adjacencies. We used ids to

define locations of internal nodes. The other benefit is when debugging what went wrong during instantiation of

the request. Having hundreds of resources with meaningful identifiers greatly helps to find the cause of the

problem in the request. The last step that we need in order to define the triangle are adjacencies between

resources. We are using composites to connect to link resources.

In order to expose internal details, ie. ports of the underlying host, logical ports must be defined in the composite

and connected to the host's ports. Then these logical ports will be used to connect to link ports. Now we can

define triangle adjacencies.

We specify that host h1 port p1 is connected to source of link l1. Link l1 sink is connected to host h2 port p1 and

so on. As you see we use user specified identifiers to help us denote specific resource instances.

type Triangle {

 ...

 adjacency h1.p1, l1.src //Link l1 connect port p1 at host h1 to

 adjacency h2.p1, l1.dst //port p1 at host h2

 adjacency h1.p2, l2.src //Link l2 connect port p2 at host h1 to

 adjacency h3.p2, l2.dst //port p2 at host h3

 adjacency h2.p2, l3.src //Link l3 connect port p2 at host h2 to

 adjacency h3.p1, l3.dst //port p1 at host h3

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

43 43

Groovy programming language features come in handy when there is a need to specify complex topologies with

possibly hundreds of connections. It can be done by defining procedures for doing so. Even the Triangle example

can benefit from using programming. This way we do not have to define an additional type called

HostWithTwoPorts. Take a look at the example below. We use a loop three times to define three hosts and three

links. To ease up iterating over resources we defined two lists hosts and links. The second loop is used to connect

all resources together. Please, check DSL below:

type Triangle {

 description = "Triangle using Groovy language iterators to define

adjacencies."

 id = "t1"

def hosts = []

def links = []

3.times { idx ->

 def h1 = host {

 id = "host$idx"

 port { id = "p1" }

 port { id = "p2" }

 }

hosts << h1

def l1 = link {

 id = "link$idx"

 port { id = "src" }

 port { id = "dst" }

}

links << l1 //

adjacency h1.p1, l1.src

 }

 3.times { idx -> adjacency hosts[(idx + 1) % 3].p2, links[idx].dst }

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

44 44

Appendix I: Resource Guide

Each resource type has a different set of properties that can be specified or read by users. This section provides

a list of resource types and possible properties with description of their field types and possible ranges.

I. Composite types

Aggregate logical resources are specified by this type.

List of parameters:

Parameter Type Description Example

description String <read, write, optional>
Characterizes the type for the
user.

Host that has two ports.

id String <read, write, optional>
User defined identifier. If not
specified it is autogenerated
by the service.

h1

providerId String <read-only>

Globally unique identifier of
the resource instance.
Resource instances have this
value set by the service.

Host-1505196483255

status
RESERVED, ACTIVATING,
ACTIVE, DEACTIVATING,
RELEASING <read-only>

Current state of the resource. ACTIVE

ports Map<id, port> <read only>
Map of ports defined by the
user.

port { id = "p1" }
port { id = "p2" }

Example:

type HostWithTwoPorts {

 description = "Host that has two ports."

 id = “Type id”

 host {

 id = "h1"

 port { id = "p1" }

 port { id = "p2" }

 }

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

45 45

II. Host

A virtual machine is depicted by this type. Each default VM has the following components preinstalled:

 Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-37-generic x86_64)3

List of parameters:

Parameter Type Description Example

location
PRG, BRA, AMS, MIL, HAM, PAR,

MAD, LON <read, write, optional>
location of the resource PRG

id String <read, write, optional>

User defined identifier. If not

specified it is autogenerated by

the service.

h1

providerId String <read-only>

Globally unique identifier of the

resource instance. Resource

instances have this value set by

the service.

Host-

1464179133289

status

RESERVED, ACTIVATING,

ACTIVE, DEACTIVATING,

RELEASING <read-only>

Current state of the resource. ACTIVE

ports Map<id, port> <read only>
Map of ports defined by the

user.

port { id = "p1" }

port { id = "p2" }

3 Other images are possible; please contact gts-operations@lists.geant.org.

mailto:gts-operations@lists.geant.org

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

46 46

 Default configuration Comments

Host { } cpuSpeed = = 2.3 The minimum clock speed of the CPU in GHz.

image = “<string>” The ISO image of the operating system installed on

the host by default.

The current operation system is “Ubuntu 14.04”

disk = = 20 Disk space coming with the host* defined in GB.

* persistent storage (NFS) of 3GB is also available in

folder “project-share” of testbed.

consoleAccess = = “<public

URL>”

Public URL of the console access to the host.

port { } Framing = = “<Eth>” Only Ethernet (802.1Q) framing is available.

The current default configuration is c2r2h20 (2 virtual cores = 1 physical core, 2 GB RAM and 20 GB hard disk

space); but other flavors and images are possible. Please contact gts-operations@lists.geant.org.

Example:

host {

 id = "h1"

 location = "prg"

 port { id = "p1" }

}

mailto:gts-operations@lists.geant.org

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

47 47

III. Link

Represents a virtual circuit between resources. Always has exactly two ports for source and sink.

List of parameters:

Parameter Type Description Example

id String <read, write, optional>

User defined identifier. If not

specified it is autogenerated

by the service.

l1

providerId String <read-only>

Globally unique identifier of

the resource instance.

Resource instances have this

value set by the service.

OpenNsaLink-GT-

228a44578b

status

RESERVED, ACTIVATING,

ACTIVE, DEACTIVATING,

RELEASING <read-only>

Current state of the resource. ACTIVE

ports Map<id, port> <read only>

Map of exactly two ports

source and sink. Note that the

two port ids always have to be

“src” and “dst”.

port { id = "src" }

port { id = "dst" }

 Default configuration Comments

Link { } capacity = {1…10000} Capacity of the link defined in Mbps. Default value is
10 Mbps

port { } Framing = = “<Eth>” Only Ethernet (802.1Q) framing is available

 lineRate = {1, 10} Nominal line rate of the port defined in Gbps.
Default value is 1 Gbps.

 directionality = {uniDir, biDir} Directionality of the port.
Default value is bidirectional: “biDir”

Example:

link {

 id = "l1"

 port { id="src" }

 port { id="dst" }

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

48 48

IV. VSI

As of GTS 4.1 VSI (Virtual Switch Instance) is the new OpenFlow resource, which can be backed by either a

OVS instance or by a hardware switch. Please note that one of the VSI ports must be denoted with mode =

"CONTROL" to inform the service that this port is going to be a control port.

GTS currently uses Corsa DP 2100 Series switches which support OpenFlow specification 1.3 [CZI-2016].

List of parameters:

Parameter Type Description Example

location

PRG, BRA, AMS, MIL,

HAM, PAR, MAD, LON

<read, write, optional>

Location of the resource PRG

id
String <read, write,

optional>

User defined identifier. If not

specified it is autogenerated by

the service.

vsi1

providerId String <read-only>

Globally unique identifier of the

resource instance. Resource

instances have this value set by

the service.

VSI-5af7dc69-228c-

4a93-8ed1-

e1f66aa1245

status

RESERVED,

ACTIVATING, ACTIVE,

DEACTIVATING,

RELEASING <read-only>

Current state of the resource. ACTIVE

ports Map<id, port>
Map of ports defined by the

user.

port { id = "p1" }

port { id = "p2" }

controllers List<controller> Controller configuration

controller

{ipv4=”10.10.100.100”

port=”6653”}

switchIPv4Addr IPv4 address IPv4 address of the fabric switch 10.10.100.1

 switchIPv4Mask IP mask IP mask of fabric subnet 255.255.255.0

switchMode String (currently unused parameter)

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

49 49

Example:

type OneVSI {

 description = "Two hosts connected to OpenFlow switch, and a controller."

host { id = "h1"

 location = "PRG"

 port { id = "port1" }

}

host { id = "h2"

 location = "PRG"

 port { id = "port1" }

}

host { id = "controller"

 location = "PRG"

 port { id = "port1" }

}

link { id = "l1"

port { id="src" }

port { id="dst" }

}

link { id = "l2"

port { id="src" }

port { id="dst" }

}

link { id = "lc"

port { id="src" }

port { id="dst" }

}

vsi { id = "vsi1"

 location = "PRG"

 switchIPv4Addr="10.10.100.1"

 switchIPv4Mask="255.255.255.0"

 controller {

ipv4="10.10.100.100"

port="6653"}

 port { id = "port1"

logicalPort=1 }

 port { id = "port2"

logicalPort=2 }

 port {

 id="port3"

 mode="CONTROL"}

}

adjacency h1.port1, l1.src

adjacency vsi1.port1, l1.dst

adjacency h2.port1, l2.src

adjacency vsi1.port2, l2.dst

adjacency controller.port1, lc.src

adjacency vsi1.port3, lc.dst

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

50 50

V. External Domain

The External Domain resource [SOB-2015] represents an endpoint in some facility that is outside the GTS service

area. This facility is reachable by a preprovisioned virtual circuit that has been established outside of the scope

of a normal GTS testbed life cycle by the GTS service management team. To request such a preprovisioned

virtual circuit, click on “Services” in the top navigation menu and then click on “Request External Domain”. In this

form you can fill in the details for the preprovisioned virtual circuit and request it by sending this information to

the GTS operations team.

When the virtual circuit has been provisioned, the external domain can be used with the following DSL code:

Users may specify the following properties of the external domain:

 id – alphanumeric string, case sensitive; The ID is a user chosen name of the External Domain

resource (unique within the scope of the Testbed DSL) that can be used within Adjacency

specifications to reference a particular ED object/port pair, or for other debugging purposes during the

life cycle of the testbed;

 location – choice of “AMS”, ”BRA”, ”PRG”, ”LON”, ”HAM”, “MIL”; case insensitive. The GTS pop

location defines where the External Domain virtual circuit appears on the edge of the GTS domain.

 Port id - choice of “ep1”, or “ep2”. The port construct specifies a port ID that is preconfigured within

GTS (by the service management team) to be the GTS endpoint for an External Domain virtual circuit.

The port id must be either “ep1” or “ep2”. These port ids, at the associated location, are configured to

represent different External Domains at different times. The user and the GTS service management

team must coordinate to arrange for an external Domain facility to be attached to the GTS domain, and

to identify the specific External Domain <location>/<portid> pair which will terminate the virtual circuit

going to the particular External Domain. For convenience, the user is able to use the External Domain

identifier and the port ID to reference the External domain in adjacency specifications.

To reiterate: It is the “location”/”port id” pair that maps to a particular External Domain at any particular time.

And within the testbed DSL description, an External Domain resource instance can be specified and referenced

much like a Host resource. Below you can find an example with a host “h1” which is defined to be in Prague

that is connected to an external domain called “ProtoGENI-SL” which meets GTS in London and presents a

port id “ep1” that other testbed resources can connect to. The host h1 port eth1 is connected via link l1 to

external domain ProtoGENI-SL port ep1.

ExternalDomain {

id = "ex1"

location = "lab1"

port { id = "ep1" }

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

51 51

Example:

 For more information please contact gts-operations@lists.geant.org.

ExternalExample {

host {

 id = "h1"

 port { id = "eth1" }

 port { id = "eth2" }

}

link {

 id = "l1"

 port {id = "src" }

 port {id = "dst" }

}

ExternalDomain {

id = "ProtoGENI-SL"

location = "LON"

port { id = "ep1" }

 }

 adjacency h1.eth1, l1.src

 adjacency ProtoGENI-SL.ep1, l1.dst

}

mailto:gts-operations@lists.geant.org

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

52 52

VI. Bare Metal Server (BMS)

i. Introduction to Bare Metal Servers

Represents a physical server that is controlled by the testbed user. Currently the following flavors are available:

 Dell R520 (8C/16T Intel Xeon E5-2450 v2 @ 2.5 GHz, 32 Gb ECC DDR3 1600 MKz RAM, 2xSAS, 372

GB, 6.0 Gb/s HDD (must be configured as RAID0 or RAID1 in PERC H710 controller first). Servers are

in AMS, LON, MIL

 Dell R520 (8C/16T Intel Xeon E5-2450 @ 2.1 GHz, 32 Gb ECC DDR3 1600 MHz RAM, 2xSAS, 372 GB,

6.0 Gb/s HDD (must be configured as RAID0 or RAID1 in PERC H710 controller first). Servers are in

HAM

 Dell R530 (10C/20T Intel Xeon E5-2650 v3 @ 2.3 GHz, 32 Gb ECC DDR4 2133 MHz RAM, 2xSAS, 372

GB, 6.0 Gb/s HDD (must be configured as RAID0 or RAID1 in PERC H730 controller first). Servers are

in MAD

Notes for BMS in GTS version 4.1.3:

When activated for the first time during the reservation, the BMS instance will be in its initial (“factory default”)

state. This practically means that you will need to check the initial settings such as BIOS time and date, RAID

configuration and other, and adjust them to your needs. See sections Introduction to Bare Metal
Servers, PERC H710 Mini RAID configuration and PERC H730 Mini RAID configuration with examples of

PERC 710/730RAID controllers configuration and screenshots of Ubuntu 16.04 server installations.

Default timezones on virtual machines are Central European Time/Central European Summer Time. Configure

right time and timezone at BMS, or change timezone at VMs.

Restrictions for BMS in GTS version 4.1.3:

 In GTS version 4.1.3 only one port can be configured at each BMS for connection to other DSL resources

(other BMS, VM or VSI)

 Unfortunately, the Internet connectivity for the BMS is not supported out of the box in this version of the

GTS.

So in GTS version 4.1.3 the following testbed configuration is recommended for experiments with BMS:

One BMS and one VM for VPN. With this configuration you can have full IP connectivity from your local machine

to your bare metal server using VPN.

As a temporary solution GTS staff will also configure manually an additional management interface. In this case,

please, do not deactivate/release the testbed yourself, but instead write to GTS support to do this. Before the

testbed deactivation we need to manually delete any additionally configured interface on the BMS.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

53 53

Parameter Type Description Example

id String <read, write, optional>

User defined identifier. If not

specified it is autogenerated

by the service.

s1

location

PRG, BRA, AMS, MIL,, PAR, MAD,

LON

<read, write, optional>

location of the bare-metal

server
PRG

image String <read, write, optional>

The Operating System image

to pre-install on this bare-

metal server

"ubuntu-14.04.3-

server-amd64.iso"

port Map<id, port>
Map of one port as defined

by the user.
port { id = "port1" }

Example:

OneBMS_and_OneVM_in_LON {

id = "OneBMS_and_OneVM_in_LON"

description = "NI:BMS in LON connected to VM in LON"

// vm_in_lon bms1_lon

// eth1 <------>eth1

//

baremetalserver { id = "bms1_lon"

 description = "BMS with ubuntu-16.04-server, located in London."

 location="lon"

 image = "ubuntu-16.04-server.iso"

 port { id = "eth1" }

 }

host { id = "vm_lon"

 description = "VM located in London."

 location = "lon"

 port { id = "eth1" }

 }

 link { id = "eth1_link"

 port { id="src" }

 port { id="dst" }

 }

 adjacency eth1_link.src, bms1_lon.eth1

 adjacency eth1_link.dst, vm_lon.eth1

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

54 54

ii. PERC H710 Mini RAID configuration

After testbed activation open BMS console and connect to Guacamole [GUA-2017], using “Credentials”, that are

below the link to Guacamole (see Figure 48):

Figure 48: Connecting to Guacamole

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

55 55

On BMS startup press F2 to enter DELL Server System Setup menu. When you see in console the OS installation

window, select Language and then select “Boot from first hard disk.” Press any key. On boot press F2.

1. Select Device Settings (see Figure 49)

2. Select Integrated RAID Controller Dell PERC H710.

3. Select Virtual Disk Management

4. Select Create Virtual Disk

Figure 49: DELL server system setup

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

56 56

Then continue with the following steps as shown in Figure 50:

5. Select RAID 1

6. Select Select Physical Disks

7. Select “Both”

8. Check All, and

9. Apply Changes / Ok

Figure 50: setup RAID PERC H710 Mini

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

57 57

10. Enter Virtual Disk Name

11. Click Create Virtual Disk and confirm operation (CheckBox, “Yes”, “Ok”)

12. Click “Back” and “Finish” several times to “Exit” from Setup.

Figure 51: set virtual disk

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

58 58

iii. PERC H730 Mini RAID configuration

After Testbed activation open BMS console and connect to Guacamole, using “Credentials”, that are below link

to Guacamole (see Figure 48).

On BMS startup press F2 to enter DELL Server System Setup menu. When you see in console the OS installation

window, select Language and then select “Boot from first hard disk.” Press any key. On boot press F2.

1. Select Device Settings.

2. Select Integrated RAID Controller Dell PERC H730.

3. Select Create Profile Based Virtual Disk

4. Select Generic RAID 1

Figure 52: setup RAID PERC H370 Mini

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

59 59

iv. Installation of OS on BMS

After Testbed activation open BMS console and connect to Guacamole, using “Credentials”, that are below link

to Guacamole (see Figure 48). Create RAID1 or RAID0 (see PERC H710 Mini RAID configuration and PERC

H730 Mini RAID configuration). Without RAID configuration you can only use Live-CD image to test BMS.

OS Ubuntu 16.4 server installation example:

1. Select Language in next window click “Install Ubuntu Server”. If you do not configure RAID, select in

menu “Boot from first hard disk” and press any key. Go to sections PERC H710 Mini RAID configuration

or PERC H730 Mini RAID configuration

2. Select Language, Country (use other to select country in Europe). Note: Default timezones at Virtual

Machines are Central European Time/Central European Summer Time. Configure right time and

timezone at BMS, or change timezone at VMs.

3. Select Country to base default locale settings on.

4. “No” or detect keyboard layout. Use ”Tab” or arrors to change selected items in menu.

5. Select “Country of origin for the keyboard” and keyboard layout.

6. Wait. Reconnect Guacamole if needed.

7. Configure the network. Select first 10 Gb Ethernet interface for configuration. Use settings, that you plan

for BMS port in your network configuration. Note: in GTS v 4.1.3 only one port at BMS can be configured.

8. At this point, you can choose to "Configure network manually" or leave this for later by selecting the "Do

not configure network at this time.

9. Regardless of your choice in step 8, the gateway and the DNS server should remain unspecified as this

is just a point-to-point link.

10. Enter host name, skip domain name, enter user name and password.

11. Advice: Do not “Encrypt your home directory”

12. Unmount mounted partitions if exist.

13. Select “Partitioning method” and select disk to partition.

14. Remove if exist existing logical volume data. Write changes to disk.

15. Select volume group size. Write changes to disk.

16. Blank for no proxy.

17. Select “No automatic updates”.

18. Choose software to install (press blank to select). Select OpenSSH server necessarily.

19. Install the GRUB boot loader to the master boot record.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

60 60

20. Continue.

21. Installation complete. Wait for system to boot.

22. If OS does not boot and you see in console the OS installation window, select Language and then select

“Boot from first hard disk.” Press any key. On boot press F2 and change in BIOS boot order to “Hard

drive C” first:

System BIOS/Boot Settings/BIOS Boot Settings/Boot Sequence/Change order/Hard drive C/+ to move

to first position. Back/Back/Finish/Yes/Ok/Finish/Yes.

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

61 61

VII. BNF Grammar

<property> ::= <key>=<value>

<properties> ::= <property>(;|\n)<properties>

<port> ::= port { <properties> }

<atomic> ::= <atomic-type> { <properties> <ports> }

<atomic-type> ::= host | link | ofx | vsi | baremetalserver

<composite> ::= type <name> { <properties> <resources> <ports> <adjacencies> }

<resources> ::= <resource> <resources>

<resource> ::= <composite> | <atomic>

<adjacencies> ::= <adjacency><adjacencies>

<adjacency> ::= adjacency <port-id>, <port-id>

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

62 62

Appendix II: Additional examples

I. Examples: One host

The following example shows how one host can be described with DSL:

If you need to have one host at a specific location for your experiment then you must specify this in your DSL
code:

testbed {

 id = "OneHost"

 description = "One host in Prague"

 host {

 id = "h1"

 location = "PRG"

 port { id = "port1" }

 }

}

testbed {

 id = "OneHost"

 host {

 }

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

63 63

II. Example: Two hosts linked together

This example shows in two steps how you can define two hosts and a link and connect them to each other:

Step 1: Describe both hosts and the link:

Step 2: Describe the adjacencies to actually connect the entities:

HostsLine {

 description = "PRG host linked with

BRA host"

 host {

 id = "h1"

 location = "PRG"

 port { id = "port1" }

 }

 host {

 id = "h2"
 location = "BRA"
 port = { id = "port2" }

 }

 link {

 id = "l1"

 port { id = "src" }

 port { id = "dst" }

 }

...

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

64 64

HostsLine {

 description = "PRG host linked with BRA

host"

 host {

 id = "h1"

 location = "PRG"

 port { id = "port1" }

 }

 host {

 id = "h2"
 location = "BRA"
 port { id = "port2" }

 }

 link {

 id = "l1"

 port { id = "src" }

 port { id = "dst" }

 }

 adjacency h1.port1, l1.src

 adjacency h2.port2, l1.dst

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

65 65

III. Example: Triangle between three locations

For a triangle to be set up between three different locations you need to first describe the three hosts and specifiy
their locations in your DSL code:

Step 1: Describe hosts and locations:

Step 2: Describe the three links between them:

type triangle {

 description = "Triangle between PRG,

BRA, and MAD"

 host {

 id = "h1"

 location = "PRG"

 port { id = "port11" }

 port { id = "port12" }

 }

 host {

 id = "h2"

 location = "BRA"

 port { id = "port21" }

 port { id = "port22" }

 }

 host {

 id = "h3"

 location = "MAD"

 port { id = "port31" }

 port { id = "port32" }

 }

...

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

66 66

Step 3: Describe the adjacencies to connect them:

...

 link {

 id = "l1"

 port { id = "src" }

 port { id = "dst" }

 }

 link {

 id = "l2"

 port { id = "src" }

 port { id = "dst" }

 }

 link {

 id = "l3"

 port { id = "src" }

 port { id = "dst" }

 }

...

...

 link {

 id = "l1"

 port { id = "src" }

 port { id = "dst" }

 }

 link {

 id = "l2"

 port { id = "src" }

 port { id = "dst" }

 }

 link {

 id = "l3"

 port { id = "src" }

 port { id = "dst" }

 }

 adjacency h1.port11, l1.src

 adjacency h2.port21, l1.dst

 adjacency h1.port12, l2.src

 adjacency h3.port32, l2.dst

 adjacency h2.port22, l3.src

 adjacency h3.port31, l3.dst

}

...

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

67 67

IV. Example: Three triangles built using DSL code iterations

The following describes three triangles being setup between Prague, Bratislava and Madrid:

type Triangle {

 description = "Triangle using Groovy

language iterators to define adjacencies."

 id = "t1"

def hosts = []

def links = []

3.times { idx ->

 def h1 = host {

 id = "host$idx"

 port { id = "p1" }

 port { id = "p2" }

 }

hosts << h1

def l1 = link {

 id = "link$idx"

 port { id = "src" }

 port { id = "dst" }

}

links << l1

adjacency h1.p1, l1.src

 }

 3.times { idx -> adjacency hosts[(idx + 1) %

3].p2, links[idx].dst }

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

68 68

V. Example: Two OpenFlow switches (VSI), each with two ports,

one host and one separate controller

twoCorsaVSIController2Hosts {

 description = "Two Corsa VSI, each with two ports, one host and a controller"

 id = "twoVsiCorsaTst"

 host {

 id="host1"

 port { id="port1" }

 }

 host {

 id="host2"

 port { id="port1" }

 }

 host {

 id="controller"

 port { id="port1" }

 port { id="port2" }

 }

 vsi {

 id="vsi1"

 location="HAM"

 switchIPv4Addr="10.10.100.1"

 switchIPv4Mask="255.255.255.0"

 switchMode="hard"

 controller {

 ipv4="10.10.100.100"

 port="6653"

 }

 port {

 id="port1"

 logicalPort=1}

 port {

 id="port2"

 logicalPort=2}

 port {

 id="port9"

 mode="CONTROL"

 }

 }

 vsi {

 id="vsi2"

 location="MAD"

 switchIPv4Addr="10.10.101.1"

 switchIPv4Mask="255.255.255.0"

 switchMode="hard"

 controller {

 ipv4="10.10.100.100"

 port="6653"

 }

 port {

 id="port1"

 logicalPort=1

 }

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

69 69

 port {

 id="port2"

 logicalPort=2

 }

 port {

 id="port9"

 mode="CONTROL"

 }

 }

 link {

 id="h1vsi"

 port { id="src" }

 port { id="dst" }

 }

 link {

 id="h2vsi"

 port { id="src" }

 port { id="dst" }

 }

 link {

 id="vsi1vsi2"

 port { id="src" }

 port { id="dst" }

 }

 link {

 id="controllervsi1"

 port { id="src" }

 port { id="dst" }

 }

 link {

 id="controllervsi2"

 port { id="src" }

 port { id="dst" }

 }

 adjacency host1.port1, h1vsi.src

 adjacency vsi1.port1, h1vsi.dst

 adjacency host2.port1, h2vsi.src

 adjacency vsi2.port1, h2vsi.dst

 adjacency vsi1.port2, vsi1vsi2.src

 adjacency vsi2.port2, vsi1vsi2.dst

 adjacency controller.port1, controllervsi1.src

 adjacency vsi1.port9, controllervsi1.dst

 adjacency controller.port2, controllervsi2.src

 adjacency vsi2.port9, controllervsi2.dst

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

70 70

VI. Example: One host directly connected with a Bare Metal Server

OneHostBms {

 id = "OneHostBMS"

 host {

 id="h1"

 port { id="port1" }

 }

 baremetalserver {

 id = "bms1"

 cpuCores = 2

 image = "imageID"

 port { id = "port2" }

 }

 link {

 id="l1"

 port { id="src" }

 port { id="dst" }

 }

 adjacency h1.port1, l1.src

 adjacency bms1.port2, l1.dst

}

GÉANT Testbed Service (GTS)
User and Resource Guide
Document Code: GN-16-001

71 71

References

CZI-2016 Cziva R., Sobieski J., Kumar Y., High-Performance Virtualized SDN Switches for Experimental

 Network Testbeds, SC16 – INDIS, Austin, TX, USA, Nov. 8, 2016,

 https://scinet.supercomputing.org/workshop/sites/default/files/INDIS16_paper01.pdf

DEL-D61 Deliverable D6.1 (DS2.3.1): Architecture Description: Dynamic Virtualised Packet

 Testbeds Service

DLL-2017 http://www.dell.com.

FAR-2014 F. Farina, P. Szegedi, J. Sobieski, GÉANT World Testbed Facility - Federated and

 distributed Testbeds as a Service facility of GÉANT, published at FIDC 2014 in

 Karlskrona, Sweden, 2014

GUA-2017 Apache Guacamole Clientless Remote Desktop Gateway,

 https://guacamole.incubator.apache.org/.

GRO-2014 GROOVY, http://groovy.codehaus.org/

NAE-2016 Naegele-Jackson S., Sobieski J., Gutkowski J., Hažlinský M., Creating Automated Wide-Area

Virtual Networks with GTS – Overview and Future Developments, 2016 IEEE International

Conference on Cloud Computing Technology and Science (CloudCom) (Luxembourg City,

12/12/16 - 12/15/16)

RYU-2014 RYU Project Team, RYU SDN Framework, http://osrg.github.io/ryu-book/en/Ryubook.pdf,

available on September 29, 2014

SOB-2015 J. Sobieski, S. Naegele-Jackson, B. Pietrzak, M. Hazlinsky, F. Farina and K. Kramaric, GÉANT

Testbeds Service (GTS) - GÉANT Testbed Service - External Domain Ports: A demo on multiple

domain connectivity, European Workshop on Software Defined Networks (EWSDN), Bilbao,

Sept. 30 - Oct. 2, 2015

SZE-2014 P. Szegedi, User’s Training 1 – The Basics.

https://scinet.supercomputing.org/workshop/sites/default/files/INDIS16_paper01.pdf
https://guacamole.incubator.apache.org/
http://groovy.codehaus.org/
http://osrg.github.io/ryu-book/en/Ryubook.pdf

