WHERE IS RIGHT SPECTRAL GAP FOR ACCOMMODATION OF EMERGED PHOTONIC SERVICES OF TIME AND FREQUENCY OR QKD?

(APPROACHING 10 YEARS AND PLAN TO MOVE FROM C BAND)

Josef Vojtech, Sarbojeet Bhownick, Ondrej Havlis, Vladimir Smotlacha, Pavel Skoda, Martin Slapak, Rudolf Vohnout, et al

Optical Networks department, CESNET, Czech Republic

Jan 15th 2020

4th SIG NGN, CERN
Lada Altmannovaa, Michal Hazlinskya, Tomas Horvatha, Jaroslav Jedlinskya, Jan Kundrata, Martin Michala, Petr Munstera, Radek Velca

Ondrej Cipb, Jan Hrabinab, Martin Cizekb, Lenka Pravdovab, Simon Reruchab

a Department of Optical networks, CESNET a.l.e., Zikova 4, Prague 6, 160 00, Czech Republic
b Institute of scientific instruments, Czech Academy of Sciences, Královopolská 147, Brno, 612 64, Czech Republic
T/F transfers over shared fibre
T/F infrastructure CESNET
Spectrum Exhaustion
Alternatives
Performance verifications
Clonets
Why T/F transfers over shared fibre? On dedicated it is easier.

Example fibre line length: 1 400 km

Fibres rental annual cost (based on average price*)
 - EUR 420 000

Share T/F infrastructure with data

Core network example – project CLONETS
Examples C band (1530-1565 nm)
- T - lambdas - IPE-BEV/CESNET-ACONET
- T - lambdas - MIKES/CSC/FUNET
- T - lambdas - RISE/SUNET

- F - lambdas - RISE/SUNET
- F - dark channel bidi amplified (ch 44) – LNE-SYRTE/RENATER
- F - dark channel bidi amplified (ch 46-39) – ISI/CESNET
Examples out of C band

- T - dark channel semibidi amplified – VSL-NIKHEF/SURFNET
 - 1470/1490nm
 - 1nm in 1510
 - C band

Under construction

- F - dark channel bidi amplified (1570 nm C/L) – METAS, ETH Zurich/SWITCH

- T - lambdas (C band) – GARR
2011 – alien wave

- Comparison of time scales UTC(TP) and UTC(BEV), Caesium beam 5071A/001 atomic clocks, since Aug 2011
- One way distance 550km/340miles (including 220km/137miles NIL) 137 dB
- C band channel any
2014

- Already C and L DWDM systems
- Amplified 800 GHz channel, One way 306 km, 85 dB, combination of G.652 and G.655 fibres
- 4, later 5 pcs bidi EDFAs with single signal path
Research and Education Network CESNET2

- > 5800 km of dark fibre lines
- T/F transfer
- Fibres shared with data
- Dedicated all-optical channel
- 800/400 GHz,
 - Ch 46-39/46-43

- 700km of lit bidi channels provided as a service
- Projected length 2476 km, transmission 1183 km
Time and Frequency Infrastructure

- Coherent Optical Frequency
- Metro – Fibre
- Long haul – DWDM bidi channel
- 550 km 800 GHz / 520 km 400 GHz
- Operation
 - 840 km ch46 1540.5 nm
 - 250 km ch44 1542.1 nm
Inceased Spectrum Use

Obsolete – 96 ch. per 10 Gbit/s – 0,96 Tbit/s (OOK)
Mature – 96 ch. per 200 Gbit/s – 19,2 Tbit/s (DP16QAM)
Present – 80 ch. per 400 Gbit/s – 32 Tbit/s (60 GHz, DP16QAM)

L band technology available since late 1990 – 90nm

\[\text{OSNR}_{ASE} = \text{Pout} - \text{NF} - G - 10 \log(N) + 58 \]

source: Pecci P. Alcatel Submarine Networks „Design of Submarine Open Cables“

source: cisco.com
Alternative Bands

- Multiplication of data capacity of single 50 GHz channel capacity with similar reach is no more scaling (Shannon),
- **C** capacity is exhausting (necessary guardbands)
- **L** will have the similar problem soon
- **S** not suitable for long haul (lack of amplification)
- **C/L** typ 4 nm 1566-1570 are skipped because of technological reasons, EDFAs work fine here
Alternative Bands

<table>
<thead>
<tr>
<th>Coherent Frequency Transmission</th>
<th>Precise Time Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td>Transceivers</td>
</tr>
<tr>
<td>Detectors</td>
<td>Band Filters</td>
</tr>
<tr>
<td>Band Filters</td>
<td>Channel Filters</td>
</tr>
<tr>
<td>Channel Filters</td>
<td>Amps</td>
</tr>
<tr>
<td>Amps</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>+++</td>
</tr>
<tr>
<td>C/L</td>
<td>++</td>
</tr>
<tr>
<td>L</td>
<td>+</td>
</tr>
<tr>
<td>S</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SOA, Brill only</td>
</tr>
<tr>
<td>C</td>
<td>+++</td>
</tr>
<tr>
<td>C/L</td>
<td>++</td>
</tr>
<tr>
<td>L</td>
<td>+</td>
</tr>
<tr>
<td>S</td>
<td>CWDM only</td>
</tr>
<tr>
<td></td>
<td>SOA only</td>
</tr>
</tbody>
</table>

Notes:
- C: Coherent Frequency Transmission
- C/L: C+L Coherent Frequency Transmission
- L: Precise Time Transmission
- S: Spectral Transmission
- CWDM: CWDM only
- SOA: SOA only
- Brill: Brill only
- Coherent Optical Frequency
- Optical clock $^{40}\text{Ca}^+$ ion
- Transfer of second harmonic of 729 nm (1458)
- Requested transfer channels:
 - Classical: C band ch. 46
 - 1570 nm C/L band
 - S band (1458 nm)
Optical clock based on trapped and cooled single ion $^{40}\text{Ca}^+$ Direct output at: 729 nm

Distance: 20 km, 29 dB
Performance Verification of 1570 nm-bidi EDFAs CzechLight

Vojtech J., "Alternative spectral windows for photonic services distribution," Proc. SPIE 11128, Infrared Remote Sensing and Instrumentation XXVII, 1112806 (9 September 2019); https://doi.org/10.1117/12.2529713
Tested WhiteRabbit in 1570 nm band, dark channel (100 km), bidirectionaly amplified channel (200 and 300 km)
- Necessity of significant spectral gap
- Raman energy transfer to lower energies/high wavelengths
- On shared fibres S band looks interesting (no amplifiers necessary)
- 1570 nm to be field tested and deployed soon
- 1458 subject to further tests
- Plans to gradual vacation of channels 44/46 and move to 1570 nm
Thank You very much for Kind Attention!

Questions?

josef.vojtech@cesnet.cz