

WHERE IS RIGHT SPECTRAL GAP FOR **ACCOMMODATION OF EMERGED PHOTONIC SERVICES OF TIME AND FREQUENCY OR QKD?** (APPROACHING 10 YEARS AND PLAN TO MOVE FROM C BAND) Josef Vojtech, Sarbojeet Bhownick, Ondrej Havlis, Vladimir Smotlacha, Pavel Skoda, Martin Slapak, Rudolf Vohnout, et al **Optical Networks department, CESNET, Czech Republic** Jan 15th 2020

4th SIG NGN, CERN

Co-authors

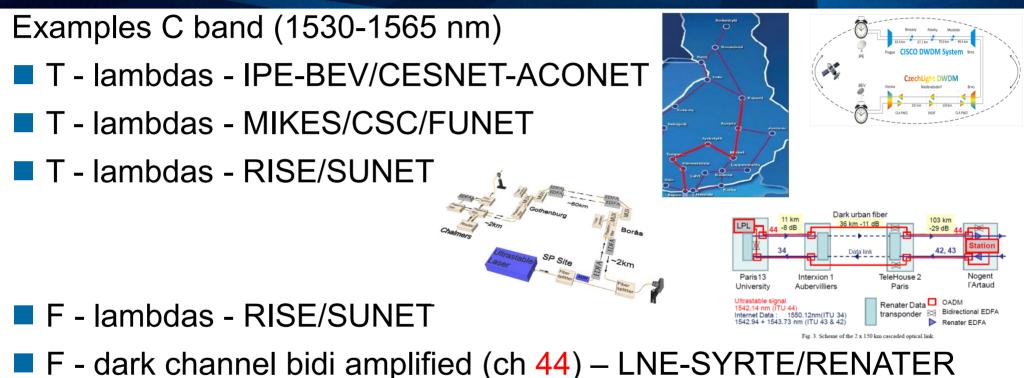
Lada Altmannova^a, Michal Hazlinsky^a, Tomas Horvath^a, Jaroslav Jedlinsky^a, Jan Kundrat^a, Martin Michal^a, Petr Munster^a, Radek Velc^a

Ondrej Cip^b, Jan Hrabina^b, Martin Cizek^b, Lenka Pravdova^b, Simon Rerucha^b

 ^a Department of Optical networks, CESNET a.I.e., Zikova 4, Prague 6, 160 00, Czech Republic
^b Institute of scientific instruments, Czech Academy of Sciences, Královopolská 147, Brno, 612 64, Czech Republic

- T/F transfers over shared fibre
- T/F infrastructure CESNET
- Spectrum Exhaustion
- Alternatives
- Performance verifications
- Clonets

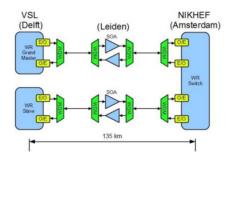
T/F Transfers Over Shared Fibres


Why T/F transfers over shared fibre? On dedicated it is easier.

- Example fibre line length: 1 400 km
- Fibres rental annual cost (based on average price*)
 - **EUR 420 000**
- Share T/F infrastructure with data

Core network example – project CLONETS

T/F Transfers Over Shared Fibres

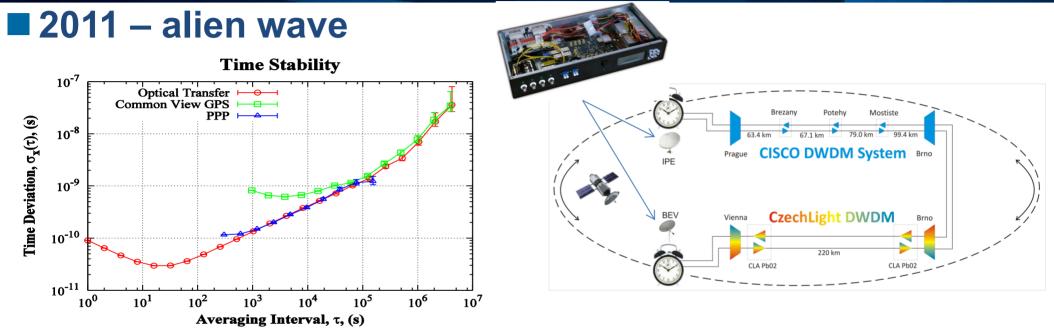

- F dark channel bidi amplified (ch 46-39) ISI/CESNET

5

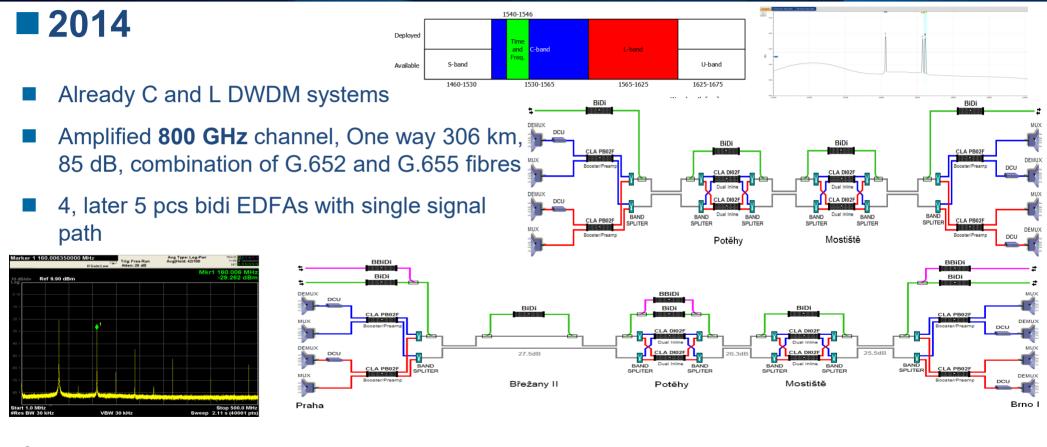
T/F Transfers Over Shared Fibres

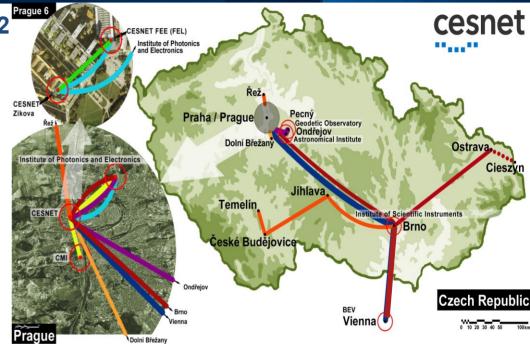
Examples out of C band

- T dark channel semibidi amplified VSL-NIKHEF/SURFNET
 - 1470/1490nm
 - Inm in 1510
 - C band



Under construction


- F dark channel bidi amplified (1570 nm C/L) METAS, ETH Zurich/SWITCH
- T lambdas (C band) GARR


- Comparison of time scales UTC(TP) and UTC(BEV), Caesium beam 5071A/001 atomic clocks, since Aug 2011
- One way distance 550km/340miles (including 220km/137miles NIL) 137 dB
- C band channel any

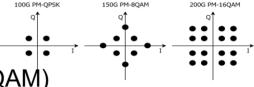
Time and Frequency Infrastructure

- Research and Education Network CESNET2
- > 5800 km of dark fibre lines
- T/F transfer
- Fibres shared with data
- Dedicated all-optical channel
- 800/400 GHz,
 - Ch 46-39/46-43

- 700km of lit bidi channels provided as a service
- Projected length 2476 km, transmission 1183 km
- 9

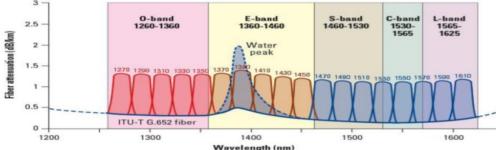
Time and Frequency Infrastructure

- Coherent Optical Frequency
- Metro Fibre
- Long haul –DWDM bidi channel
- 550 km 800 GHz /520km 400 GHz
- Operation
 - 840km ch46 1540.5 nm
 - 250km ch44 1542.1 nm

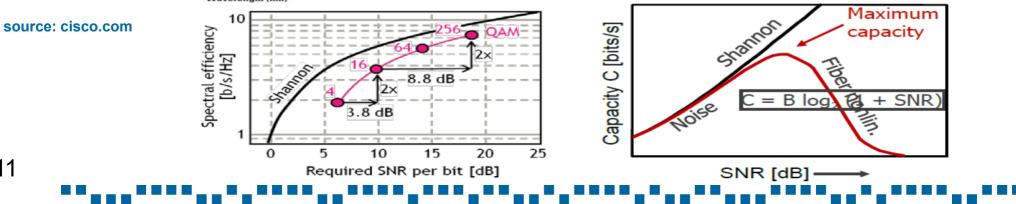


Inceased Spectrum Use

Obsolete Mature


11

- 96 ch. per 10 Gbit/s
- 80 ch. per 400 Gbit/s Present
- 0,96 Tbit/s (OOK)
- 96 ch. per 200 Gbit/s 19,2 Tbit/s (DP16QAM)
 - 32 Tbit/s (60 GHz, DP16QAM)


200G PM-160AP

L band technology available since late 1990 – 90nm

source: Pecci P. Alcatel Submarine Networks "Design of Submarine **Open Cables"**

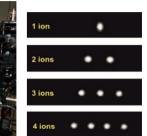
Alternative Bands

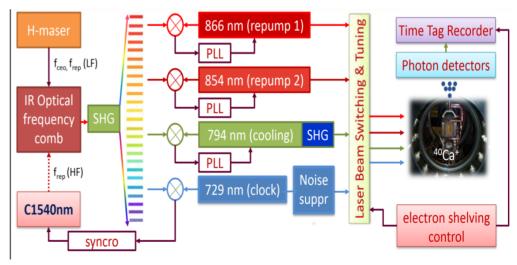
- Multiplication of data capacity of single 50 GHz channel capacity with similar reach is no more scaling (Shannon),
- C capacity is exhausting (necessary guardbands)
- L will have the similar problem soon
- S not suitable for long haul (lack of amplification)
- C/L typ 4 nm 1566-1570 are skipped because of technological reasons, EDFAs work fine here

Alternative Bands

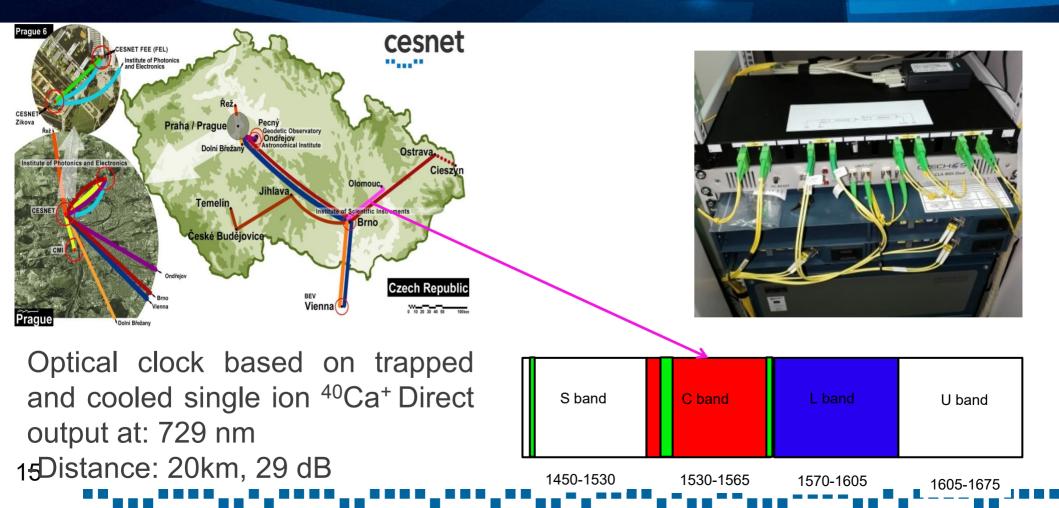
Coherent Frequency

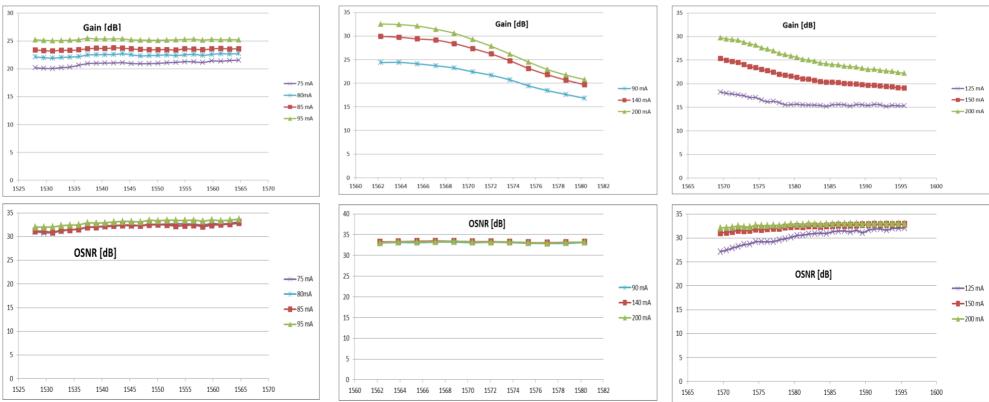
Transmission								
	Sources	Detectors		Channel Filters	Amps			
с	++	+++	++	+++	+++			
C/L	++	+++	+	++	++			
L	+	+++	+	+	++			
S	0	+++	0	-	SOA, Brill only			


	se Time smission			
	Transceivers	Band Filters	Channel Filters	Amps
с	+++	++	+++	+++
C/L	++	+	++	++
	+	+	+	++
L	T			**
ç		0		SOA only
S	CWDM only	0	-	SOA only


Multi Channel TF Infrastructure

- Coherent Optical Frequency
- Optical clock ⁴⁰Ca+ ion
- Transfer of second harmonic of 729 nm (1458)
- Requested transfer channels:
 - Classical: C band ch. 46
 - 1570 nm C/L band
 - S band (1458 nm)

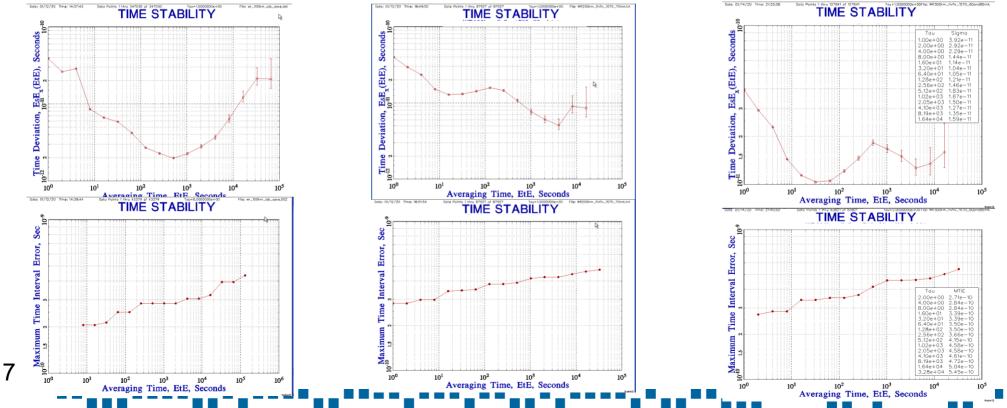




Multi Channel TF Infrastructure

Performance Verification of 1570 nmbidi EDFAs CzechLight

Vojtech J., "Alternative spectral windows for photonic services distribution," Proc. SPIE 11128, Infrared Remote Sensing and Instrumentation XXVII, 1112806 (9 September 2019); https://doi.org/10.1117/12.2529713


С

1570 nm

16

Performance Verification of 1570 nm

Tested WhiteRabbit in 1570 nm band, dark channel (100 km), bidirectionaly amplied channel (200 and 300 km)

- Necessity of significant spectral gap
- Raman energy transfer to lower energies/high wavelengths
- On shared fibres S band looks interesting (no amplifiers necessary)

Conclusions

- 1570 nm to be field tested and deployed soon
- 1458 subject to further tests
- Plans to gradual vacation of channels 44/46 and move to 1570 nm

Thank You very much for **Kind Attention! Questions?** josef.vojtech@cesnet.cz