

Nordic T&F activities

15.1.2020, GÉANT 4th SIG-NGN meeting, Geneva/CERN Jani Myyry, CSC/Funet

Recent T&F activities in the Nordic region

- 1st Nordic T&F workshop held in Copenhagen September 2019
 - NORDUnet and Nordic NRENs
 - National Time Labs (DK, FI, NO, SE)
 - o IXPs (DK, SE) and regulators (FI, NO, SE)
- Situation vary in each country but was seen beneficial to work together
 - Enhancing sustainable support for official time keeping, critical infrastructures like 5G and smart power grids
- Knowledge sharing and working together when planning T&F transfer over optical systems
 - O Do not "reinvent the wheel"
 - o Interoperability between optical domains

T&F transfer FI-SE

- Had STM-64 based T&F link Espoo (FI) Stockholm (SE) few years ago
 - Now decommissioned
- Migration to federated NORDUnet next-gen network
 - Use existing national optical systems and CBF links
 - New FI-SE links will be build Q1/2020, opportunity to build T&F support for bi-directional signals from day 1
- Funet and SUNET have similar requirements
 - O Hybrid amplification (EDFA + RAMAN) to optimize OSNR
 - Mixing data and T&F in C-band not desired
 - OTDR (1650 nm) in use or planned

Bi-directional T&F challenges

- RAMAN amplifiers
 - o No filters can be installed in front of the RAMAN amplifier
 - 0 < ~ 1528 nm wont pass RAMAN amplifiers</p>
 - o ~ 2 dB insertion loss for > C-band signals
 - o Except: extensive loss in ~ 1570 nm region
 - ~ 2-3 dB RAMAN gain in 1600 nm region
 - o 2 dB gain measured for 1650 nm OTDR signals
- 1600 nm region between C-band and OTDR
 - o Little bit higher loss per km in G.652 fibers
 - Higher chromatic dispersion
- Extra C-band loss to be avoided if possible
 - o Daisy chaining different filters not an optimum solution

Joint planning for T&F links

- Extensive discussions and planning late 2019
 - Funet and SUNET
 - Netnod/RISE (SE) and VTT (FI)
 - OADVA
- 1610 +-6,5 nm chosen for T&F
 - Already tested in Finland and Sweden by using ADVA 1605/1615 nm optics and separate 1610 +-6,5 nm filters
 - L-band DWDM optics available for ~ 1610 nm with required CD tolerance
 - o EDFA noise filtered out so should not be an issue
- White Rabbit switches and low latency/jitter media converters
 - L-band optics will be tested by Netnod/RISE
- More optimization for filtering structure...

CSC

T&F filter

- Customized C-band (1525-1570 nm), T&F (1610 +-6,5 nm) and OTDR (1630-1670 nm) filter
 - o o,7 dB C-band loss (very important, similar with existing OTDR filter)
 - o 1,0 dB T&F loss (very important on high loss links)
 - 1,2 dB OTDR loss (less important)
 - o Fully bi-directional (no calibration needed)
- Customized optical circulator for high loss links (21+ dB)
 - o 2 dB insertion loss
- Customized 1:2 optical splitter for low to medium loss links
 4 dB insertion loss
- Low CAPEX (fs.com)
 - 0 < 70 EUR filter, < 10 EUR splitter, < 140 EUR circulator</p>

Photos: CSC/Funet and Netnod

T&F filters in a node

T&F capability plans

- Espoo Turku Stockholm
 Turku Stockholm (when build)
 Espoo Turku (filter change)
- Vaasa Umeå (readiness)

T&F readiness plans

- CBF to SUNET in Kalix
- CBF to UNINETT in Kilpisjärvi
- Kaaresuvanto (EISCAT-3D site in Finland)
- Sodankylä (observatory)
- Kajaani (HPC site in Finland)

Further links per needs (already build)

Jani Myyry

Senior Network Specialist Funet CSC – IT Center for Science Ltd.

jani.myyry@csc.fi

