Consortium

GARR optical network evolution and DCI for Data Lake for Science

PAOLO BOLLETTA (GARR)

CERN, 16/01/2020

4th SIG-NGN Meeting

Outline

- GARR Optical Network Update
- IDDLS project
- DCI Lab Trials
- Impact on network evolution

Consortium

2

EDUCATION

Conclusions

Paolo Bolletta // 4th SIG-NGN Meeting // CERN, 16/01/2020

Status of the current infrastructure

(2011) Huawei 1/10 G

- 10G/40Gbps channels not enough for the needs of the core
- Close to the end-of-life
- Maintenance (+2Y) ends 2020

(2015) Infinera 10/40/100 G

- 500Gbps superchannels
- Fine for the capacity needs of Southern Italy
- High power and space consumption

(2017) AW 2x100G among Core PoPs

Buffer solution – it works super fine

(2019) New fiber footprint on North-East Area

- North-Eastern region: closed topology / ARNES direct Interconnection / Lightnet interconnection
- ECMWF new site in Bologna

How GARR sees its optical evolution

• Open Line System (partially disaggregated) to replace the oldest infrastructure

- April 2019: we issued a RFI on open line systems and optical transport network equipment (Juniper, ADVA, ECI, Huawei, Infinera)
- August: tender for DCI (Infinera G30) for an INFN-GARR joint project on Distributed Datalake for Science

?Consortium

- February 2020 GARR-T Optical Transmission Network Tender
- September 2020 start of the deployment phase

Nodes and hierarchical optical network

GARR-T optical fiber topology

Timeline

USE CASE GARR – ELISA : High Capacity on demand

Problem Statement

Actors

- Complete separation of user and GARR control and management planes
- [MAIN GOAL] Dinamically establish high capacity interconnections between user premises (DC)
- Provide interconnections self-management tools to the users
- DC/Transport Network integrated load and failure mangement

Solution

- A: DC operators manually (?) ask for resources through a transport network interface (web/transport nms access)
- **B:** DC controller interacts with transport network through a network controller/orchestrator NBI
- **C:** DC App interacts with transport network through a network controller/orchestrator NBI

• GARR

- (transport) network controller/orchestrator
- provisioning/monitoring/accounting performance/fault management tools
- User
 - (DC) controller
 - provisioning/monitoring/accounting performance/fault management tools
- Vendor controller

Architecture/Diagram (e.g.)

8

DC Z

AW – NREN-A

Description:

interconnection between 2 DC over multidomain DWDM Networks (NREN + GEANT)

Prerequisites:

- Spectrum Connection Service over the pan-European network
- AW capable dwdm network domains
- DCI boxes
- Demarcation Points (e.g. MIL GEANT PoP) DWDM
 <u>Actors:</u>
- Geant
- NRENs
- DC facilities

AW – NREN-B

DWDM

network domain

THE ITALIAN EDUCATION & RESEARCH NETWORK

IDDLS

Italian Distributed Data Lake for Science

Paolo Bolletta // 4th SIG-NGN Meeting // CERN 16/01/2020

10

IDDLS: Italian Distributed Data Lake for Science

INFN-GARR collaboration to setup a prototype of an Italian DataLake exploiting:

- Last generation networking technologies provided by GARR
 - DCI (Data Center Interconnection) equipment
 - SDN (Software Defined Network) deployment
- Software for creating scalable storage federations provided by INFN
 - eXtreme-DataCloud (XDC) project
 - SCoRES project (INFN-NA)
- Real life use cases for testing
 - CMS
 - ATLAS
 - BELLE-II
 - Possibly involving LNGS experiments (XENON) and VIRGO

NA

BA₁

RM₁

Paolo Bolletta // 4th SIG-NGN Meeting // CERN, 16/01/2020

?Consortium

Timeline

3 years project

First year

- Technology scouting for DCI equipment to be deployed by GARR
- Application (INFN) requirements analysis
- Network equipment acquisition (INFN and GARR) and Lab testing
- Deployment on mixed Lab+WAN environment of the networking equipment
- Creation of the DataLake on sites connected with standard networking and first prototype using DCI

Second year

- Testing of the mixed (Lab+WAN) configuration
- Final creation of the DataLake on the 3 INFN sites with DCI systems
- Performance evaluation and comparison
- Possible acquisition of new equipment with increased performance

Third year

- Deployment only on WAN of the networking equipment
- Optimization of the DataLake
- Performance evaluation
- Final consideration

Lab deployment at GARR for testing

Paolo Bolletta // 4th SIG-NGN Meeting // CERN, 16/01/2020

?Consorti

13

January 2019: Kickoff meeting @GARR

https://agenda.infn.it/event/17957/

January – June 2019: test transmission platforms in the GARR Lab

End of June 2019: networking hardware chosen

- Transmission platfom and DCI scouting and lab testing
 - Infinera Groove G30 Selected and under procurement
- 100Gb switches (acquired after tender)
 - Arista 7050SX3 (32x1000Gbs)

Q1 2020: Networking systems deployment in a Lab+WAN configuration

First DataLake prototype

Q2 2020: First evaluation runs

Market scouting / RFI

Reference Topology and Traffic Demands

AW transport over compensated DWDM network

2 approaches

Integrated : Packet+DWDM in a single BOX

Lacks in:

- Management and control
- Platform maturity
- Scalability

Disaggregated:

- DWDM DCI
- PKT layer Device for overlays and

dynamic reconfiguration

Pros:

- Cheaper solutions
- Better scalability
- No dependencies in platform choice

THE ITALIAN EDUCATION & RESEARCH NETWORK

Paolo Bolletta // 4th SIG-NGN Meeting // CERN, 16/01/2020

LAB and Field Trials

Paths on the production environment

End Sites	km	dB	lla	Raman	ROADM	
RM1 – RMT	22	10	0	0	2	
RMT FRA	8	5	0	0	1	Short Metro
FRA – RM2	29	12	0	0	1	
Total	59	27	0	0	4	

	End Sites	km	dB	lla	Raman	ROADM
Intermediate Ding	RM1 – PI	430	118	4	0	2
Intermediate King	PI – FI	136	40	0	2	1
	FI – RM2	360	104	3	4	1
	Total	926	262	7	6	4

End Sites	km	dB	lla	Raman	ROADM
RM1 – PI	430	118	4	0	2
PI-FI-BO1	259	74	0	4	2
BO1-BO-PE	466	144	4	0	3
PE – RM2	361	96	2	0	2
Total	1516	432	10	4	9

1

Long Ring

16 Consortium

Paolo Bolletta // 4th SIG-NGN Meeting // CERN, 16/01/2020

Test transponders 100G

 Integrated Transponder Client: 100G Ethernet Line: CFP1 100G ACO - QPSK coherent

 Pizza Box DCI - DCO – with pkt integration option Client: 100-Gbps (QSFP28) pluggable interfaces
 Line: 200-Gbps CFP2-DCO coherent DWDM pluggable interfaces, which support 100-Gbps QPSK and 200-Gbps 8QAM, and 16QAM modulation options

 Pizza Box DCI - ACO – Disaggregated Transponder Client: up to 4x100GbE QSFP28 Line: CHM1 sled – 400G 2xCFP2-ACO (100G QPSK, 150G 8QAM, 200G 16QAM)

Outcomes of the test sessions

Pizza Box DCI - ACO – Disaggregated Transponder Its been only platform capable to address the reference topology in the current network Infinera G30 Groove has been **selected** and **procured** for the project (**arrived yesterday!!**)

Developed and teste monitoring tools for disaggregated DCI: SNMP INFLUXDB GRAFANA

?Consortium

18

EDUCATION

Details presented @ CEF 2019:

https://www.cesnet.cz/wp-content/uploads/2019/09/gloria.pdf

Paolo Bolletta // 4th SIG-NGN Meeting // CERN, 16/01/2020

IDDLS Pilot Diagram

- Use Case Demonstration
- Provisioning and service configuration via APIs
- Topologies and services reconfiguration automated with Ansible (DCI + Packet Layer)
- 3rd party controller management and control (ONOS)
- 3rd party planning and design tool (TIP GNpy)

20

THE ITALIAN EDUCATION & RESEARCH NETWORK

Impacts on network evolution

Paolo Bolletta // 4th SIG-NGN Meeting // CERN 16/01/2020

OLS node A/D features scalability

Spectrum Arrangement

Exten		25% future	expansions	
ded C-BANI	25% Spectrum Sharing	e2e	Spectrum Slice	Flex Grid
0 4.8 THz (25% Regional	H2 ←→ H1 H3 ←→ H2	100/150/200 Gbps	Fixed Grid 50GHz
96 Ch)	25% Backbone	H1 ←→ H1	100/200Gbps+ SuperChannel	Flex Grid

THE ITALIAN EDUCATION & RESEARCH NETWORK

Open approach to API/NBI

APIs and NBIs are mandatory for integration and net operations in a multivendor environment

APIs:

- REST
- NETCONF
- RESTCONF

Data Model (YANG) equipment:

- ONF Core model
- OPEN ROADM
- OpenConfig

Data Model (YANG) network :

- ONF Transport API
- IETF TEAS TE Topology

Scope and target of these data models are not overlapped and span between different applications

24 GARF

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

Paolo Bolletta // 4th SIG-NGN Meeting // CERN, 16/01/2020

Conclusions

- We are along the way ...
- A lot of work done but also to be done

... since we are talking about lakes, seems to be easy to find birds of a feather and flock together

Paolo Bolletta // 4th SIG-NGN Meeting // CERN, 16/01/2020

THE ITALIAN EDUCATION & RESEARCH NETWORK