

Performance measurement with RIPE Atlas and RIS data An investigative Approach

Jasper den Hertog Research and Development RIPE NCC

4 March 2020 | Géant Performance Workshop

RIPE Atlas

overview

Hardware Probes

V1

V4

Software Probes & Virtual Anchors


```
~ atlas yum install atlasswprobe

~ atlas yum install atlasswprobe

~ atlas
```

Probes Distribution

Probes Distribution

currently 10,000+ connected probes at any given time

RIPE Atlas Interfaces

web

RIPE Atlas Interfaces

command line interface

```
$ ripe-atlas measure ping --target example.com
$ ripe-atlas measure ping --packets 7 --size 42 --target example.com
$ ripe-atlas measure traceroute --target example.com
$ ripe-atlas measure traceroute --packets 2 --target example.com
$ ripe-atlas measure dns --query-argument example.com
$ ripe-atlas measure dns --query-argument example.com$ ripe-atlas measure dns --query-argument example.com
```

RIPE Atlas Interfaces

API (restful + streaming)

```
Terminal
jdenhertog ~ $ curl "https://atlas.ripe.net/api/v2/measurements/12016253/results?probe_ids=50426&start=2019-06-14T00:00" | jq .
 % Total % Received % Xferd Average Speed Time Time Current
                              Dload Upload Total Spent Left Speed
100 500 0 500 0 0 330 0 --:--:- 0:00:01 --:--: 330
   "af": 4,
   "dst_addr": "1.1.1.1",
   "dst_port": "53",
   "from": "141.8.2.122",
   "fw": 4970,
   "group_id": 12016253,
   "lts": 65,
   "msm_id": 12016253,
   "msm_name": "Tdig",
   "prb_id": 50426,
   "proto": "UDP",
   "result": {
     "ANCOUNT": 1,
     "ARCOUNT": 1,
     "ID": 51022,
     "NSCOUNT": 0,
     "QDCOUNT": 1,
     "abuf": "x06AgAABAAEAAAABAmlkBnNlcnZlcgAAEAADwAwAEAADAAAAAAAEA01YUAAAKQWsAAAAAAA",
     "answers":
        "NAME": "id.server",
        "RDATA": [
          "MXP"
        "TYPE": "TXT"
     "rt": 34.02,
     "size": 54
   "src_addr": "192.168.2.117",
   "stored_timestamp": 1560599501,
```

RIPE Atlas Measurements

Measurements currently running

	Built-in	User-defined			
		Total UDM	Anchoring	DNSMON	Other
Ping	41	6953	1924	0	5029
Traceroute	45	6721	1926	875	3920
DNS	158	6033	1	3500	2532
SSL/TLS Certificate	4	374	0	0	374
NTP	0	140	0	0	140
HTTP	4	1982	1925	0	57
WiFi	0	14	0	0	14

Infra Structure

RIPE Atlas Overview

RIPE Atlas Use Case

What kind of performance can Atlas measure?

Latency

Ping Latency

LatencyMON

Where is B-root?

Path Efficiency

TraceMON

Available visualisations: DNS

Map, colour-coded response time or

List of probes, sortable by response time

Combine with other Tools

RIPE IPmap

Geo-location internet core infra-structure

RIPE IPmap

https://atlas.ripe.net/measurements/11680405/#!openipmap

RIS

Routing Information Service

RIS Live BGP Stream

Some work that we do

IXP-Country-Jedi

IXP IPs: YES, out-of-country IPs: NO

IXP IPs: NO, out-of-country IPs: NO

IXP IPs: YES, out-of-country IPs: YES

IXP IPs: NO, out-of-country IPs: YES

Sweden ipv4 ipv6 comparison

IXP IPs: YES, out-of-country IPs: NO

IXP IPs: NO, out-of-country IPs: NO

IXP IPs: YES, out-of-country IPs: YES

IXP IPs: NO, out-of-country IPs: YES

Sketches of the Peer-to-Peer Fabric of a Country

The quality of end-user connections are often expressed in download speeds towards content providers. Instead, the sketches presented here focus on peer-to-peer connections in a country.

The sketches explore the different ways in which end-users are interconnected within the same country: the peer-to-peer fabric. Each sketch represents a snapshot of this fabric at a single given point in time. They try to put a number on the amount of different ways the networks interconnect their users.

These sketches are created with active measurements from the RIPE Atlas measurement platform, datasets from RIPEstat, AS-to-ORG datasets from CAIDA and a dataset from APNIC that estimates the percentage of end-users in each network.

Peer-to-Peer Fabric

country

USA

snapshot date

1 March 2018

github

https://github.com/emileaben/ixp-country-jedi/

url

http://sg-pub.ripe.net/ixp-country-jedi/dk/2018/03/01

ASN-CXA-ALL-CCI-22773-RDC

CENTURYLINK-US-LEGACY-QWEST

Atlas Trends

https://ipmap.ripe.net

jdenhertog@ripe.net @density215