
Wireless Crowdsourced Performance Monitoring
and Verification

WiFi Performance Measurement Using End-User Mobile Device Feedback

Vasileios Kokkinos, Kostas Stamos, Nikolaos Kanakis
Computer Engineering and Informatics

University of Patras, GRNET
Patras, Greece

kokkinos@cti.gr, stamos@cti.gr, kanakisn@ceid.upatras.gr

Kurt Baumann
Peta Solutions

SWITCH
Zurich, Switzerland

kurt.baumann@switch.ch

Anna Wilson
Network Development

HEAnet
Dublin, Ireland

anna.wilson@heanet.ie

James Healy
Network Management

Dublin City University (DCU)
Dublin, Ireland

james.healy@dcu.ie

Abstract—The use of crowdsourced-based network
performance measurement services and technologies is set to
increase continually among the National Research and Education
Networks (NRENs) in the near future. This requires an
understanding of the behavior of network performance issues,
and their localization and verification on wireless campus
networks. The approach presented in this paper is based on the
end-user mobile device measurement feedback and allows the
visualization of network performance in real time.

Keywords—WiFi; crowd sensing systems; crowdsourced
network performance; performance monitoring; performance
verification

I. INTRODUCTION
Eduroam [1] and campus-specific designed wireless

networks enable academic users’ (students, researchers and
staff) broadband access to the Internet via mobile devices and
laptops. A consequence of all of this improved access is a
growing user population and a nearly exponential increase of
data. Such growth results in the need for even more quality
monitoring tools, and Quality Assurance (QA), coupled to
Service and Operational Level Agreements (SLAs/OLAs) on
monitoring, measuring, verifying and visualization of wireless
network performance.

Measuring and verifying the quality (performance) of a
Wireless Network (WiFi) is particularly challenging, as there
is no single tool that covers all aspects of performance
monitoring and verification. What we did observe was a
particular weakness in existing tools in determining how
individual end users (mobile clients) experienced WiFi at a
given place on the network, at a given time. With this in mind,
we are looking for a network quality statement determined by
end-user behavior. Therefore, it is important to verify

performance issues, to localize them in real time, and to have a
visualization of reference data [2], which shows the network
performance, or lack thereof, with (automated) advice to the
network provider solving these network issues.

At present, information for performance measurement and
verification can be reported in three ways:

• Mobile End-User Device: In the past, these devices
have been highly neglected in terms of their unique
WiFi characteristics. Laptops behave differently to
smartphones and have a very different set of RF
sensor radios (interfaces) that can provide relevant
data for performance behavior on the campus WiFi
network

• Wireless Access Points (WAP)/WiFi-Controller: WAP
management interfaces show specific details on the
radio(s) and traffic. They generally do not show the
performance of actual applications or the performance
of mobile devices without a specific vendor software
extension or solution.

• Network Management Systems (NMS): These systems
have visibility of aggregate and individual client, RF
signal quality levels, usage, and spectrum interference
levels. This allows basic troubleshooting on clients
and does indicate potential problem areas, but doesn’t
necessarily tell the whole story from the mobile client
device perspective.

Wireless Access Points/WiFi Controllers and NMS
provide a needed indication of the overall campus wireless
network performance (e.g. if the network is up or down). What
we are investigating is how to provide network-relevant data
(bandwidth, latency, etc.) based on end-users’ behavior on the
campus wireless network.

The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme under
Grant Agreement No. 731122 (GN4-2).

Our motivation for this work is to research and verify the
following thesis:

Is it possible to gather data from multiple sources, including
browser-based measurements in addition to traditional
monitoring, and extract meaningful information on the
performance of a WiFi from that data?

With this thesis, we do not propose to replace traditional
hardware-probe based performance measurements. Instead,
these are supplemented with “non-invasive” performance
measurements from the end users’ devices, to provide a hybrid
solution that combines static infrastructure performance
information (objective measurements) with dynamic
performance behavior, thanks to the end-users (mobile
clients).

The rest of this paper is structured as follows: Section II
shows the architectural concept of our approach, the building
blocks and their functionality. Section III presents a Walk-
Through of the process that results in the end-users to
consuming the reference data. Section IV describes the
WiFiMon software, and the collection of data and their
correlation using pseudo-code examples with a Web-UI
discussion. In Section V we report on implementation forms
with main focus on the Dublin City University (DCU)
expertise. In Section VI we conclude our work with an outlook
on future steps.

II. WIFIMON - ARCHITECTURE BUILDING BLOCKS
The key indicator for providing a wireless crowd source

performance monitoring and verification schema is the end-
user, which means that all mobile devices (clients) can be
treated as traffic generators. The architecture can be divided
into four blocks: the data source block, the analytics, the
aggregation and the visualization block. This approach follows
the process steps outlined below:

• COLLECTING data on the WiFi interface of
eduroam-enabled infrastructures, collectors defined
for Syslog, RADIUS Accounting, L2/L3 address
binding IPv4/6, DHCP logs and websites, and mobile
apps with embedded tests.

• STORING temporary, persistent data in (non-) SQL
DBs formats.

• ANALYSING data, where raw data will be analyzed in
real time, the end-user-row data must be set up to
reference data regarding security and privacy
requirements, and

• CONSUMING data, which includes the aggregation
of raw-data (source data) from the analyze engine for
visualizing in real-time reference data. Open APIs
allows customizing queries.

These steps reflect the architecture building
blocks/topology, as depicted in Fig. 1.

Fig. 1. Architecture Building Blocks

A. Data Source
The data source layer (1) generates information through

websites with embedded test procedures, namely JavaScript
code embedded in the web source that enables users to run
process tests without intervention, and (2) is exporting raw
data from data source collectors.

The Open Source tools, Boomerang [3] and NetTest [4]
are embedded into websites in order to extract network-related
information within a Web browser. Such information includes
performance data, such as throughput on downloads and
uploads of images with various sizes, and round-trip time
(RTT) through ping, as experienced by the end-user.

B. Relational Database
The raw data, such as Syslog Server logs, DHCP logs, and

RADIUS Accounting [5], are automatically collected in the
Relational Database (RDB). This means that the raw data
generated from the data source block are automatically
imported in the RDB. The RDB will use SQL as the language
for querying and maintenance. The database will be based on
Open Source technologies, such as PostgreSQL for the
relational database, and InfluxDB, for a time-series database
used for visualization.

C. Analytic Engine
The Analytic Engine (AE) is the architecture block used to

examine/analyze the RDB’s raw data and preparation of
reference data, namely, the data objects relevant to
transactions comprising value sets, statuses or classification
schema, such as raw data, in visualization transactions. Thus,
the main functional of the AE is to sort the raw data collected,
analyze it, and provide visualizations using tools that offer the
greatest insight on the wireless network performance. In the
current approach Grafana [6] is used to create the
measurement and monitoring dashboards.

D. Query and Report Generation
The Query and Report Generator (QaRG) is used to obtain

specific information from the RDB and the AE. Its main
purpose is (1) to search for usable information from these two

architecture blocks and (2) to post this information in the form
of reports or visualization options to the Web-user Interface
(Web-UI), the front end.

E. Web User Interface Front End
The available data from the RDB and the AE is accessible

through a network admin Web-UI, which allows data
querying. Web-UI allows investigation of collected
performance reference data, and in turn, status checks of the
wireless network. This block of the architecture shows
collected data and allows real-time visualization options, such
as collected data from a specific time period, collected data
from a specific WAP, min-max-mean values of
download/upload/latency measurements, non-normal
measurements and top-five performing locations.

III. WIFIMON – WALK-TROUGH
The end user connects a mobile device to the eduroam

SSID and an association is made with the wireless access
point. Authentication is completed thorough IEEE 802.1x
EAP TTLS [7] and entries are created in the RADIUS
accounting log and the DHCP log, along with coordinated
timestamps, for the successfully authenticated mobile device
which now has an IP address and can communicate (Fig. 2).
This data is extracted and populated into the database (this
process is achieved in a number of ways, but initially was a
manual process). The end user is then required to visit a web
page, and in the context, this webpage may be a frequently
visited page such as a university e-learning portal, a
conference website, or a webmail application. The website has
the JavaScript installed (see IV) and this is executed within the
browser of the mobile device.

Fig. 2. WiFiMon overview

This initiates a series of download and upload file requests
and performance metrics, which are stored on the NetTest
server. This data is then extracted and populates the RDB
where it is parsed along with the data from the RADIUS and
DHCP logs (and perhaps syslog), to correlate the access point
identifier (location) with the mobile device and its
performance on the wireless network.

IV. WIFIMON SOFTWARE
This section describes the software that is used in

WiFiMon, and how it takes browser-based measurements
(through JavaScript) and correlates these measurements with
the information extracted from the RADIUS servers.
Additional information regarding the Web-UI is also provided.

A. Measurements and Correlation Software
The WiFiMon concept provides wireless, crowdsourced

performance monitoring and verification on highly frequented
web sources. In the current version of WiFiMon, the
download/upload throughput and RTT are calculated using
NetTest. NetTest is an open source browser-based network
measurement library, licensed under the MIT License, capable
of determining throughput, latency, and other network
parameters, using JavaScript and/or Flash.

To enable measurements, some sample images (with a
predefined size in bytes) have been hosted in an Apache2
server. In order to estimate the download throughput, NetTest
calculates the duration of the download process and estimates
the download throughput between the client and the web
server hosting the sample image based on the sample image
size. A similar process is used in order to estimate the upload
throughput and RTT.

The above network-related information is then stored in
the RDB, together with some user-related information (user
IP, location, user agent) and the InfluxDB [8] for time-series
visualization. The pseudo code for the above procedure can be
found below:

Pseudo code for performing/storing measurements

 1: SET registered subnets //allow measurements only from WiFi subnet
 2: CHECK if cookie is set for the user //avoid repeated measurements and
 3: //network overloading
 4: IF user_IP inside registered_subnets
 5: IF cookie is not set
 6: GET timestamp
 7: CALCULATE download_throughput, upload_throughput, RTT
 8: GET user_IP, user_agent
 9: GET user_location // with Google API loader
 10: POST timestamp, download_throughput, upload_throughput,
 11: RTT, user_IP, user_agent, user_location to Postgres and
 12: InfuxDB databases
 13: SET cookie
 14: ENDIF
 15: ENDIF

Storing the user-related information and the measurements,
however, is only half of the process. In university campuses
(where the WiFi network consists of a number of WAPs), this
information has to be correlated with the WAP that the
measurement was taken from, so that the administrator can
have a clear view of the network performance. Fortunately, the
missing information can be derived from the RADIUS
accounting, the authN/Z log files. In detail, RADIUS servers

store information such as timestamp of authorization, MAC/IP
of client device, MAC/IP of WAP, Connection info (e.g. IEEE
802.11b), Username associated with device, etc.

To correlate the two parts, the client IP and the timestamp
of authorization of the RADIUS logs can be compared with
the user IP and the measurement timestamp as described in the
pseudo code below:

Pseudo code for correlating measurements with Radius logs

 1: CHECK user_IP, timestamp //from measurements
 2: CHECK client_IP, auth_timestamp // from Radius logs
 3: WHILE auth_timestamp < timestamp // in descending order to
 4: // select the most recent entry
 5: IF user_IP == client_IP
 6: INNER JOIN measurement and Radius_entry ON IP
 7: BREAK
 8: ENDIF
 9: ENDWHILE

B. WiFiMon Web-UI
The WiFimon Web-UI consists of a Spring Boot [9] web

application that is using Hibernate [10] for data query. It
includes the functionalities that are necessary to enable the
measurements (i.e. register subnets), project the correlated
data (Fig. 3) and allow real-time visualization options, such as:

• Measurements for a specific time period (Fig. 4).

• Measurement results from a specific WAP.

• Measurement results from specific IPs or users.

• Measurement results for selected wireless
technologies (e.g. IEEE 802.11b, etc.)

• Measurement results for user-related parameters (i.e.
per operating system, browser used), see Fig. 5.

• Min-max-mean values of download/upload/latency
measurements.

Fig. 3. Measurements’ table after correlation with RADIUS logs

Fig. 4. Download and upload throughput

Fig. 5. Download Throughput per Browser

Finally, the WiFiMon UI includes the Grafana tool, which
loads the measurement data via InfluxDB and allows the user
to display and organize them in multiple ways.

V. WIFIMON EXPERTISE
WiFiMon expertise allows various implementations at

various places, based on feasibility studies e.g. at the Dublin
City University (DCU) to wireless performance monitoring
and their verification demonstrated at the TERENA
Networking Conference 2015 (TNC2015).

The implementation discussed here is the feasibility study
at the campus of Dublin City University. This is our initial
testbed to ascertain the feasibility of the research under
consideration.

A. Dublin City University (DCU) campus
The WiFi infrastructure at DCU comprises a pair of

Motorola (now Zebra Technologies) RFS7000 wireless
controllers, with a range of Motorola-dependent and
lightweight access points. DCU uses FreeRADIUS [11]
running on a Linux platform, with an ISC DHCP server on
Linux. There are over 800 wireless access points, across
multiple campuses. The solution is implemented to use non-
tunneled bridge mode, where client devices are placed on a
local switch VLAN after authentication based on a RADIUS
attribute, which distinguishes categories of users. This allows
authenticated staff to be dropped into staff VLANs, students
into student VLANs and external (visiting) eduroam users into

external user VLANs. WiFi authentication for all access on
the Dublin City University campus is through the eduroam
configured service, for local users and for eduroam visitors.
RADIUS logs for end user mobile device associations contain
an WAP identifier, which can be matched to a room/corridor
description on the controller. This allows location based
performance monitoring and verification.

The demonstration at DCU allowed the performance of
pilot tests to determine whether it was possible to obtain
useful metrics such as download and upload rates and RTTs ,
on the wireless network, using JavaScript executing on the end
user mobile device. The hypothesis was that these
measurements could be correlated with the information
contained in the RADIUS and DHCP logs equating to WAPs
and location. At the same time, there was the challenge of
distributed locations, and how to enroll the measurement
schema over multiple locations. The parsing of the data
allowed for the clustering of WAPs in the different locations
to give an aggregate picture of performance at that specific
locations with multiple WAPs. For example it is possible to
obtain an aggregate performance measure for a large
auditorium with multiple WAPs and to visualize the overall
performance at the auditorium historically over time.

B. Procedure
While roaming, a number of clients executed the NetTest

on a number of occasions over a period of time from different
locations across the campus. When NetTest was executed a
query was triggered in order to automatically populate the data
(authN timestamp, download-upload rate of defined images on
NetTest, RTTs, latitude, longitude, client IP) from the
individual measurements to the PostgreSQL database (RDB of
the architecture, see Fig 1).

C. Results
A total of 154 performance tests were recorded where it

was possible to associate with access points across the DCU
campus. These measurements were only triggered by GN4-1
SA3 Task 3 members (three devices in total) after they visited
a test page that had the NetTest JavaScripts embedded. End-
Users roaming in the DCU campus executed the test
measurements on a number of occasions, over a period of
time, from different locations across the campus.

Fig. 6 and Fig. 7 present a sampling of the results after the
correlation of the download and upload rate with the Client
MAC. Generally, the download and upload rates show great
variation, ranging from 16 KB/s to 9300 KB/s in the case of
download and 16 KB/s to 2070 KB/s for the upload. At last,
these variations may be due to the wireless technology (e.g.
300Mbps IEEE 802.11an, 650Mbps IEEE 802.11ac, 130Mbps
IEEE 802.11bgn) and the user’s distance from the WAP
during the measurement.

Fig. 6. Correlation of Download rate with Client MAC

Fig. 7. Correlation of Upload rate with Client MAC

Fig. 8. Correlation of RTT with Connect Info

To better present the effect of the wireless technology, in
Fig. 8 we have included the results after the correlation of the
RTT with "Connect Info", i.e. the information provided by the
RADIUS logs regarding the wireless technology used. Fig. 8
shows that the RTT ranges between 31.5 ms and 170.5 ms,
where the highest values are observed for measurements
where both the download and the upload rates are relatively
low. In addition, this figure reveals that the technology of the
wireless network has a direct impact on the RTT performance.
Indeed, the majority of the high RTT values were observed
when the user was connected to a low speed WAP, i.e.
“65Mbit/s IEEE 802.11bgn”.

VI. CONCLUSION AND FUTURE WORK
The expertise gained so far shows that it is possible to

measure specific parameters of a wireless network through
JavaScript, and to correlate these measured raw data from
various log files. Several steps should be made in order to
translate the knowledge base into a complete, sustainable and
automated service for monitoring and validating the
performance of WiFi on campus. In order to achieve this, the
recommended steps should address the following topics:

A. Measurements and Verification
It is necessary to verify whether the measurements

obtained through JavaScripts embedded in frequently visited
pages are accurate enough. This could be accomplished by
installing HW monitoring probes in different rooms of a
campus/conference and at different distances from the WAPs
(location based, objective measurements). In this hybrid
approach, the hard-ware monitoring probes could measure the
quality of the wireless network in parallel with the
measurements that take place automatically through
JavaScript and shows the dynamic behavior of the wireless
network performance on the campus.

B. Mobile app deployment
On the DCU campus and at various conferences we

observed end-users satisfy their communication needs through
the use of smart devices/phones. Most of this communication
was not carried out using browser-based functions, but rather
using conference applications. While JavaScript in the
browser is an easy way to reach users, the amount of time
users spend in mobile apps is growing [12].

At last, however analysis such as this requires the largest
number of data points possible, so while a standalone
performance testing app may be a useful proof of concept, a
next step would be to provide an embeddable library so that

performance tests can be run (with the user’s consent, but
without interrupting their work) from an existing app, such as
a University’s own app.

C. Privacy
While the performance data itself, and the mapping to

access points, might be reasonably considered non-sensitive
information, we deal with data (such as RADIUS logs), which
certainly does contain sensitive information about users. This
must be handled with the utmost care, and in accordance with
campus policies and legal obligations. As this method is
deployed, it is necessary to work not just on the technical
ways to handle the data in a variety of heterogeneous
networks, but also on how to handle appropriate privacy
requirements in every campus where it is deployed in (e.g.
collecting, analyze data, access log files etc.).

References
[1] Eduroam, eduoram.org, “How to deploy eduroam on-site or on campus”.

Available from:
https://wiki.geant.org/display/H2eduroam/How+to+deploy+eduroam+on
-site+or+on+campus, [09 June 2016]

[2] WhatIS TechTarget, “Definiton of Reference Data”. Available from:
http://whatis.techtarget.com/definition/reference-data. [09. June 2016]

[3] Boomerang, “SOASTA/boomerang”. Available from:
https://github.com/SOASTA/boomerang. [09 June 2016]

[4] NetTest, “Google Code Archive”. Available from:
https://code.google.com/archive/p/nettest/. [09 June 2016]

[5] C. Ringney, S. Willens Livingston, A. Rubens Merit, W. Simpson
Daydreamer, RADIUS, “Radius Authentication Dial In User Service
(RADIUS)”, IETF, RFC2138, June 2000. Available from
https://tools.ietf.org/html/rfc2865. [09 June 2016]

[6] Grafana, grafana.org, “Beautiful metric & analytic dashboards”.
Available form: http://grafana.org/. [09 June 2016]

[7] P. Funk, Funk Software Inc., Simon Blake-Wilson, Basic Commerce &
Industries Inc., EAP-TTLS, “EAP Tunneled TLS Authentication
Protocol”, IETF, Internet Draft, July 2004. Available from:
https://tools.ietf.org/html/draft-ietf-pppext-eap-ttls-05. [09 June 2016]

[8] Influxdata, “influxDB”. Available from: https://influxdata.com/time-
series-platform/influxdb/. [09 June 2016]

[9] Spring, “Building an Application with Spring Boot”. Available from:
https://spring.io/guides/gs/spring-boot/. [09 June 2016]

[10] HIBERNATE, “Hibernate. Everything data.”. Available from:
http://hibernate.org/. [09 June 2016]

[11] D. Nelson, Elbrys Networks Inc, A. DeKok, FreeRADIUS, “Common
Remote Authentication Dial In User Service (RADIUS) Implementation
Issues and Suggested Fixes”, December 2007. Available from:
https://tools.ietf.org/html/rfc5080. [09 June 2016]

[12] Nielsen, “SO MANY APPS, SO MUCH MORE TIME FOR
ENTERTAINMENT”. Available form:
http://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-
much-more-time-for-entertainment.html. [09 June 2016]

