
© 2019 SWITCH | 1

Alexander Gall
alexander.gall@switch.ch
Telemetry and Big Data Workshop
10.11.2020

Scalable and Cost-Effective Generation of 
Unsampled NetFlow



© 2020 SWITCH | 2

NetFlow Export

•One of the oldest sources of network telemetry data
•Originally < source address, destination address, protocol, 
source port, destination port, interface >

•From Cisco-proprietary to IPFIX IETF standard
•Unsampled: process every packet
•Sampled: process “1 in n” packets only
•Today, most ISPs use sampling due to limitations on the 
exporting device



© 2020 SWITCH | 3

Why Unsampled?

Not necessary for volume-based metrics, but e.g.
•Fine-grained analysis of security incidents
•Reliable network problem debugging for low-volume flows, 
e.g.
− TCP handshake

− DNS transactions

•Also: because we can :)



© 2020 SWITCH | 4

NetFlow @SWITCH

•Used since early implementations on Cisco routers (ca. 
1996)

•Unsampled up to Cisco 6500/7600
•Only sampled starting with ASR9k

•2015: Move to external unsampled NetFlow generation on 
appliance (Flowmon) using hardware acceleration

•2020: Replace with pure software implementation on 
commodity hardware



© 2020 SWITCH | 5

SWITCH External Traffic (Inbound+Outbound)

•Peak values
− 100Gps

− 15Mpps

− 250kfps

•Average flow rate 150kfps, ~1TiB per day

− Flow analysis is the real Big Data problem here

− Current method based on nfdump is not adequate



© 2020 SWITCH | 6

Per-PoP Exporter Architecture

•Optical taps on external interfaces to copy packets
•“Packet Broker” to aggregate packets onto 2x100Gbps links 
to the exporter
− Use VLAN tags to identify original router ports

•Exporter creates and exports flows



© 2020 SWITCH | 7

Per-PoP Exporter Architecture

SWITCH
border router

Foreign BR1

8-port splitter

Packet Broker

Netflow exporter

Foreign BR2
Foreign BR3

Foreign BR8

adds vlan for each 
“color“ so we know 
where packets came 
from

V
lan 151

V
lan 152

V
lan 153

V
lan 154

V
lan 155

Foreign BRx

V
lan 156

V
lan 165

V
lan 166



© 2020 SWITCH | 8

Packet Broker

•P4-programmable, based on Tofino NPU from Intel (formerly 
Barefoot Networks)

•Device from Edgecore, 32xQSFP (WEDGE 100BF-32X), 
~6k EUR

•In-house developed P4 program (requires NDA with Intel to 
obtain SDE) https://github.com/alexandergall/packet-broker

•Easy to add useful features

− Mirror packets for local analysis

https://github.com/alexandergall/packet-broker


© 2020 SWITCH | 9

Exporter

•1RU x86-based server, e.g. AMD Epyc 16-core
•Mellanox ConnectX5 dual-port 100Gbps NIC
•~4k EUR
•In-house developed IPFIX-compliant exporter based on the 
Snabb framework (https://github.com/snabbco/snabb)

•Sourcecode at (currently missing documentation) 
https://github.com/alexandergall/snabbswitch/tree/ipfix

https://github.com/snabbco/snabb
https://github.com/alexandergall/snabbswitch/tree/ipfix


© 2020 SWITCH | 10

Key Features

•Runs in user-space
•High-Level language (Lua)

− Includes device-drivers
•Very fast JIT compiler (LuaJIT)
•Uses hardware/software RSS to scale well with the number 
of cores

•~1500 cycles per packet (depending on features/templates)
•Easy to include more complex IPFIX templates (currently 
DNS/HTTP inspection)



© 2020 SWITCH | 11

Conclusion

•2 RU, ~10k EUR per PoP
•Should scale up to ~25Mpps on 16 cores @2.6GHz

− Up to 4x100Gbps between broker and exporter

•Allows us to keep producing unsampled NetFlow for the 
foreseeable future


