IRNC NetSage – Use Cases and Scalability

Doug Southworth, Jennifer M. Schopf

November, 2020

What NetSage Does Best

- Answers questions asked by network engineers and network owners
- Human-readable summaries and patterns
- Gives people the higher level pattern so they can narrow down a time frame and then use local tools that have more detail
- Simplifies and makes accessible basic data

Monitoring using NetSage

- NetSage advanced measurement services for R&E data traffic
 - Better understanding of current traffic patterns across instrumented circuits
 - Better understanding of large flow sources/sinks
 - Performance information for data transfers
- Collaboration between Indiana University, LBNL, and University Hawaii Manoa
- Originally funded by the NSF international program, software is now being deployed domestically as well
- International networks dashboards: <u>http://portal.netsage.global</u>

IRNC NetSage Focus on Use Cases

- Bandwidth Dashboard: http://portal.netsage.global
 - How used are the links?
 - Where are congestion points?
- Flow Data Dashboards
 - What are the top sites using the circuits?
 - What are the top sources/destinations for an organization?
 - Who's using my archive?
- Moving towards debugging dashboards
 - What are the flows like between these two orgs?
 - There was a performance spike on my circuit what was it?
 - Who's transferring a lot of data really slowly?

IRNC NetSage Data Sources

- SNMP data (Passive) Basic bandwidth data
 - All IRNC Projects
- perfSONAR (Active)
 - IN@IU supported IRNC PS Nesh
- Flow data from routers (Passive)
 - NY (NEAAR), Miami (AmPath/AmLight), Seattle (TP), HongKong (TP), Hawaii-LA (PIREN)
 - PacWave
- Tstat-based traffic analysis for archives (Passive)
 - NCAR, TACC, NERSC, UHawaii Astro

NSF International Circuits – Flow Data Collectors

	By Volume				
Destination Organization	Tot	tal Volume 🗸	Largest Flow	# Flows	
Boston University		42.2 TB	52.7 GB	42.7 K	
New York University		13.7 TB	38.3 GB	986.0	
<u>Harvard University</u>		13.7 TB	274.3 GB	9.3 K	
<u>Longwood Medical and Academic Area (LMA)</u>		12.3 TB	44.0 GB	7.4 K	
<u>Brookhaven National Laboratory</u>		8.5 TB	14.1 GB	7.3 K	
<u>University of Hawaii</u>		8.4 TB	28.4 GB	1.5 K	
The University of Hong Kong		5.8 TB	60.9 GB	17.3 K	T []
WIDE Project		3.3 TB	21.9 GB	557.0	Top Flows by Organization
Yale University		2.6 тв	523.5 GB	4.5 K	
Massachusetts Institute of Technology		2.5 TB	53.2 GB	8.2 K	Organization
					0.0aa
	By Rate				
Destination Organization		Peak v	Average	# Flows	
<u>University of Hawaii</u>		8.0 Gbps	1.5 Gbps	1.5 K	JISC
Boston University		5.5 Gbps	147.1 Mbps	42.7 K	JIJC
Brookhaven National Laboratory		3.8 Gbps	222.7 Mbps	7.3 K	
Massachusetts Institute of Technology		3.4 Gbps	45.9 Mbps	8.2 K	
The University of Hong Kong		3.3 Gbps	21.0 Mbps	17.3 K	
Internet2		3.0 Gbps	1.5 Gbps	23.0	
Chinese University of Hong Kong (The)		1.5 Gbps	23.4 Mbps	2.8 K	
Fermi National Accelerator Laboratory (Fermilab)		1.1 Gbps	120.6 Mbps	297.0	neusose
Universidade Federal do Rio Grande do Sul		1.0 Gbps	90.4 Mbps	23.0	
New York Genome Center, Inc.		834.8 Mbps	157.4 Mbps	758.0	

158,145

134.6 тв

106.6 Mb/s

Individual Flows

JISC

			Flows from Source to Destination				
Timestamp	Source Organization	Source Subnet	Destination Organization	Destination Subnet	Total Volume ↓	Rate	Duration
2020-11-02 06:36:34	Jisc Services Limited	163.1.240.x	University of Pennsylvania	128.91.45.x	541.6 GB	50.7 Mb/s	23:45:01
2020-11-02 21:48:29	Jisc Services Limited	193.62.193.x	Yale University	192.31.2.x	523.5 GB	115 Mb/s	10:08:08
2020-11-02 21:57:22	Jisc Services Limited	193.62.193.x	Yale University	192.31.2.x	488.8 GB	142 Mb/s	07:40:20
2020-11-02 21:54:51	Jisc Services Limited	193.62.193.x	Yale University	192.31.2.x	397.2 GB	122 Mb/s	07:13:20
2020-11-02 21:55:54	Jisc Services Limited	193.62.193.x	Yale University	192.31.2.x	360.5 GB	145 Mb/s	05:31:22
2020-11-03 02:10:00	Jisc Services Limited	129.11.190.x	National Aeronautics and Space	198.120.185.x	295.1 GB	33.9 Mb/s	19:21:09
2020-11-03 00:09:15	Jisc Services Limited	128.232.224.x	Harvard University	140.247.139.x	274.3 GB	195 Mb/s	03:07:10
2020-11-03 00:10:31	Jisc Services Limited	128.232.224.x	Harvard University	140.247.111.x	268.0 GB	191 Mb/s	03:07:22
2020-11-03 00:10:07	Jisc Services Limited	128.232.224.x	Harvard University	140.247.139.x	243.2 GB	173 Mb/s	03:07:10
2020-11-02 02:10:00	Jisc Services Limited	129.11.190.x	National Aeronautics and Space	198.120.185.x	230.3 GB	21.3 Mb/s	23:59:59
2020-11-07 11:13:49	Jisc Services Limited	193.62.193.x	University of Massachusetts	205.172.168.x	188.4 GB	158 Mb/s	02:39:20
2020-11-03 08:02:11	Jisc Services Limited	128.232.224.x	Harvard University	140.247.139.x	175.9 GB	198 Mb/s	01:58:45
2020-11-02 22:32:08	Jisc Services Limited	193.62.193.x	Yale University	192.31.2.x	169.3 GB	106 Mb/s	03:32:30
2020-11-07 14:22:58	Jisc Services Limited	193.62.197.x	University of Massachusetts	205.172.168.x	149.3 GB	99.9 Mb/s	03:19:16

Detailed Flow Information

Volume Rate RTT

523.5 GB

114.8 Mb/s

N/A

Common Information					
Timestamp	Sensor	Flow ID	5-Tuple Hash	Protocol	Duration
2020-11-02 21:48:29	NEAAR New York sF	195EjnUBBtilhIpP9vxG	dc3f9b5e0f32edada3f070e37c8cc5fc1a5c6e5329a2166779288c38201242fe	udp	10:08:08

Source Information					
Field	Data				
Organization	Jisc Services Limited				
Country	United Kingdom				
ASN	786				
Subnet	193.62.193.x				
Port	33001				
Science Registry Discipline	BIO.Genomics and Bioinformatics				
Science Registry Org Name	European Bioinformatics Institute (EMBL-EBI)				
Science Registry Org Abbreviation	EMBL-EBI				
Science Registry Project Name	No Data				
Science Registry Project Abbreviation	No Data				

Destination Information				
Field	Data			
Organization	Yale University			
Country	United States			
ASN	29			
Subnet	192.31.2.x			
Port	34564			
Science Registry Discipline	No Data			
Science Registry Org Name	No Data			
Science Registry Org Abbreviation	No Data			
Science Registry Project Name	No Data			
Science Registry Project Abbreviation	No Data			

Flows by country

- Still a great way to see weird routes
 - One under investigation traffic from Egypt
 - Flows per country, limit to NEAAR sensor (NY)
 - https://portal.netsage.global/grafana/d/fgrOzz m k/flow-data-per-country?orgld=2&var-Sensors=NEAAR%20New%20York%20sFlow&var-Country=Egypt
 - Click on a country to see traffic between those 2 countries

Science Registry

- Updated disciplines to match NSF
- https://portal.netsage.global/grafana/d/WNn1qyaiz/ flows-by-science-discipline?orgId=2
- Next step will be using WhoIs data to match "Unknown Dest"

Flow Summary Statistics

- See the general state of the IRNC circuits
- https://portal.netsage.global/grafana/d/CJC1FFhmz/ other-flow-stats?orgld=2

General Infrastructure Improvements

- Improve dashboard load times by leveraging recent additions to Grafana that allow caching of queries between panels
 - Example: A graph and a table running the same query only need to ask the database once, whereas currently they ask independently
- Migrate perfSONAR data from TSDS to ElasticSearch using push as opposed to pull model
 - Faster availability of data
 - Leverage Elastic query language
 - Alignment with general direction of perfSONAR community

Planned Infrastructure Improvements

Data Roll-ups for large time spans:

- Reduces query times by grouping together flow data once it passes specific age thresholds
- Faster results at the expense of data fidelity
- Not usually an issue when looking for patterns of transfers over long, past time periods
- Recent, individual flow data will still be available

GridFTP and NetSage

- Single point-in-time tests can be useful, but having access to historical data gives useful insights
 - Usage patterns/times of low utilization
 - Locate failing equipment (decreasing transfer performance over time)
 - Real transfer performance with peers vs theorized
- NetSage framework is flexible enough to digest this historical data and display it in an easily accessible visual format
 - Quick visualization vs time consuming log file analysis

SC19 GridFTP Dashboard -

☆ 🕝 🖺 🏚 🖵 💿 Last 24 hours 🕶 🝳 🕏

GridFTP Test Results

198.129.77.102 to 198.124.151.102

NetSage SC19 Visualization

- GridFTP tests between
 SCinet and ESnet DTNs
- Transfer rate, volume, and locations
- Can easily
 accommodate data
 from any DTN running
 perfSONAR

Acknowledgements

- IN@IU is funded by
 - US NSF award #1450904 for TransPAC4
 - US NSF award #1540933 for NetSage
 - US NSF award #1638863 for NEAAR
 - US NSF award #1826994 for EPOC
- The TransPAC PacificWave 100gb/s network fabric is provided by Pacific Northwest GigaPop

