

RARE and GÉANT (GLOBAL) P4 Lab (aka GP4L)

Ivana Golub (PSNC)
Frédéric Loui (RENATER)

27 STF meeting

October 19-20 2022

Zurich, Switzerland / SWITCH

www.geant.org

GÉANT RARE P4 testbed

- GÉANT project environment
- RARE
- GÉANT P4 Lab
- Global P4 Lab
- GP4L Use Cases
- Looking Ahead

The **GÉANT** Project

GÉANT's vision is to ensure **equal** network **access for all scientists across Europe to** the research **infrastructures and** the **e-infrastructure resources** available to them.

A part of the European Union's Horizon 2020 research and innovation programme - GÉANT 2020 Framework Partnership Agreement (FPA)

500 contributors from 40 partners - European R&E Institutions

50 M users

GN4-3 duration: 1 Jan 2019 – 31 December 2022

The GÉANT Project Structure

WP2
Communications

Task1
Communications
Graphic Design

Task2
Services
Marketing

WP3 Stakeholder engagement WP4 Online services dev & delivery WP5 T&I services evolution & dev WP6 Network technologies & services dev WP7
Net Core Infr &
Core Service
Evolution & Ops

WP8 Security WP9 Operations Support

Task1 Partner Relations Task1 Service delivery: platform

Task1 T&I Services Task1 Net technology evolution Task1 Network Engineering & Implementation

Task1 Business Continuity Task1
Operations
Centre including
CERT

Task2 Research Engagement Task2 Service delivery: business desk

Task2 T&I Incubator Task2 Net services evolution & dev Task2 Network Evolution & Future Planning

Task2 Security Baselining Task2 Software Governance and Support

Task3 Event Management Task3 Intelligence Gathering Task3 Service dev: video conferencing

Task3 T&I Operational Support

Task3 Monitoring & Management Task3
Implementation
of the Fibre IRU
Project

Task3 Products and Services Task3 Service Management

Task4 GEANT Software Development and Operations

Task4 Community Programme Task4 Service dev: cloud offerings Task4 T&I Enabling Communities

Task5 Service adoption support

The GÉANT Project Structure

WP2 Communications Task1 Communications Graphic Design Task2 Services Task3 Event

WP3 Stakeholder engagement

WP4 Online services dev & delivery

WP5 T&I services evolution & dev

WP6 Network technologies & services dev

WP7 Net Core Infr & Core Service **Evolution & Ops**

WP8 Security

WP9 Operations Support

Task1 Partner Relations

Task1 Service delivery: platform

Task1 T&I Services

Task1 Net technology evolution

Task1 Network Engineering & Implementation

Task1 Business Continuity

Task1 Operations Centre including CERT

Marketing

Task2 Research Engagement

Task2 Service delivery: business desk

Task2 T&I Incubator

Task2 Net services evolution & dev

Network **Evolution & Future Planning**

Task2

Task2 Security Baselining

Task2 Software

Governance and Support

Management

5

Task3 Intelligence Gathering

Task3 Service dev: video conferencing

Task3 **T&I Operational** Support

Task3 Monitoring & Management

Task3 **Implementation** of the Fibre IRU Project

Task3 Products and Services

5

Task3 Service Management

Task4 **GEANT Software Development** and Operations

Task4 Community Programme

Task4 Service dev: cloud offerings

Task4 T&I Enabling Communities

Task5 Service adoption support

WP Leaders: Tim Chown (Jisc), Ivana Golub (PSNC)

WP6 budget: > 6,2 mil EUR

33 R&E organisations from 23 countries

88 team members

Router for Academia, Research and Education (RARE)

RARE is an open source routing platform, used to create a network operating system (NOS) on commodity hardware (a white box switch).

RARE uses FreeRtr as a control plane software and is thus often referred to as RARE/FreeRtr

More information:

https://wiki.geant.org/display/rare

Why RARE?

- Needs of network-aware applications and application-aware network
- Reduce vendor lock-in
- Ability to implement ad-hoc features
- Ability for use-case based solutions
- Reduce digital divide with affordable network solution without functionality trade-off

RARE/FreeRtr Basics

- Free and open source routing platform
- Controls the data plane by managing entries in Match Action Unit (MAU) tables
- Every routed interface must be in a virtual routing table, every layer interface in a bridge table

Exports control plane computation results to DPDK or hardware switches.

Uses Data Plane Programming (DPP) Language such as **Programming** Protocol-independent Packet Processors: P4 language

Programming Protocol-independent Packet Processors: P4 language

Language for **programming the data plane** of network devices

- Define how packets are processed
- P4 program structure: header types, parser/deparser, match-action tables, userdefined metadata and intrinsic metadata

Domain-specific language designed to be implementable on a large variety of targets

Programmable network interface cards,
 FPGAs, software switches and hardware ASICs

P4 Programmable Switches

EdgeCore Wedge100BF-32QS:

100GbE Data Center Switch

- Bare-Metal Hardware
- L2/L3 Switching
- 32xQSFP28 Ports

Data-Plane Programmability

- Intel Tofino Switch Silicon
- Barefoot Networks

Quad-Pipe Programmable Packet Processing Pipeline

6.4 Tbps Total Bandwidth

CPU: Intelx86 Xeon 2.0GHz

8-core/48GB/2TB SSD

TOFINO 3[™]
25.6 Tbps
64x400 GE ports

TOFINO 1 [™] 6.4 Tbps

RARE IPv4/IPv6 Features

Include, but not limited to:

- Interior Routing Protocol
- Dataplane forwarding
- External Routing Protocol
- Link local protocol
- Network management

Supported platforms:

BMv2, TOFINO, DPDK, XDP

List updated regularly:

https://wiki.geant.org/display/rare

For more features or details, contact:

rare-users@lists.geant.org

Complete feature list

Somplete leature list						
Туре	Test #	Name	₩	○○	DPDK	XCID
acl	01**	сорр	0	0	0	0
acl	02ª	ingress access list	0	0	0	0
acl	03ª	egress access list	0	0	0	0
acl	04ª	nat	0	0	0	0
acl	05ª	vlan ingress access list	0	0	0	0
acl	06ª	vlan egress access list	0	0	0	0
acl	07ª	bundle ingress access list	0	0	0	0
acl	08"	bundle egress access list	0	0	0	0
acl	09"	bundle vlan ingress access list	0	0	0	0
acl	10"	bundle vlan egress access list	0	0	0	0
acl	11ª	bridge ingress access list	0	0	0	0
acl	12 ^a	bridge egress access list	0	0	0	0
acl	13ª	vlan bridge ingress access list	0	0	0	0
acl	14 ^a	vlan bridge egress access list	0	0	0	0
acl	15 ^a	ingress pppoe access list	0	0	0	0
acl	16 ^a	egress pppoe access list	0	0	0	0
acl	17 ^a	ingress vlan pppoe access list	0	0	0	0
acl	18 ^a	egress vlan pppoe access list	0	0	0	0
acl	19 ^a	hairpin ingress access list	0	0	0	0
acl	20ª	hairpin egress access list	0	0	0	0
acl	21 ^a	hairpin vlan ingress access list	0	0	0	0
acl	22ª	hairpin vlan egress access list	0	0	0	0
acl	23ª	hairpin pppoe ingress access list	0	0	0	0
acl	24 ^a	hairpin pppoe egress access list	0	0	0	0
acl	25ª	hairpin vlan pppoe ingress access list	0	0	0	0
acl	26ª	hairpin vlan pppoe egress access list	0	0	0	۵
acl	27ª	ingress gre access list	0	0	0	۵
acl	28ª	egress gre access list	0	0	0	0
acl	29ª	ingress vlan gre access list	0	0	0	0

GÉANT P4 Lab - GP4L

Initially aimed to **validate the RARE/FreeRtr** open source routing stack software

4 switches in Europe: AMS, POZ, FRA, BUD

With growing interest, offering experimental dataplane programming facilities to researchers to perform geographically distributed network experiments:

- With the usage of RARE/FreeRtr NOS
- Using a clean slate environment

 (i.e use exclusively GP4L without
 RARE/FreeRtr dataplane & control plane)

GP4L Going Global

GP4L October 2022

GP4L Monitoring and Management Using GÉANT NMaaS Service

Network Management as a Service:

https://nmaas.eu

https://wiki.geant.org/display/NMaaS

Network Management as a Service (NMaaS)

Network Management as a Service (NMaaS) provides a portfolio of network management applications run as dedicated per-user instances in the cloud.

GÉANT's NMaaS service includes three aspects: providing, managing and maintaining the infrastructure of the NMaaS service portal, platform and selected tools, supporting users in using the system, and the selected tools for monitoring their networks via NMaaS, as well as supporting users that contribute their software to NMaaS system.

Target users

NMaaS users are organisations that do not want to own NMS infrastructure themselves and/or want to outsource network management, as well as organisations and/or individuals that are searching for quality network management software or who want to share their software within the community.

NMaaS Marketplace

NMaaS Marketplace is a catalogue of available open source tools, supported by community, distributed free, chosen by administration. There is also place for your application choice - you can propose new applications.

NMaaS is a platform for network management providing

- A portfolio of network management and monitoring applications
- Per-user, secured network monitoring infrastructure
- Dockerised images implemented through a Kubernetes cluster

NMaaS Usage

- On GÉANT instances or deployed locally
- NMaaS <u>sandbox instance</u> in GÉANT: <u>https://nmaas.geant.org/</u>
- NMaaS <u>production instance</u> in PSNC: <u>https://nmaas.eu/</u>

NMaaS Update

- Version 1.5.1 released
- The work on providing IPv6 support is ongoing
- NMaaS OAV Architecture Analysis was published

www.geant.org

NMaaS Tools Portfolio for GP4L Monitoring and Management

Network Management as a Service:

https://nmaas.eu

https://wiki.geant.org/display/NMaaS

GP4L Use cases

- Topology Monitoring with BGP-LS
- Next Generation Multicast with AMT relay/gateway and Unicast to Multicast translator, Juniper and Akamai
- Polka an innovative source routing paradigm, IFES/UFES
- Packet Marking Specification: IPv6 Flow Label, CERN
- SuperComputing22 Demo, GNA-G DIS

Topology monitoring with BGP-LS

Network topology rendering using BGP-LS

- BGP-LS feed translated to a JSON model
- The model then used to visualise as a map
- Per-minute updates

Available at: http://gp4l.geant.org

GP4L AMT relay / AMT gateway / Unicast --> Multicast

PolKA - Polynomial Key-based Architecture for Source Routing in Network Fabrics

- GP4L has been used to validate a <u>Research Paper</u> describing a innovative source routing paradigm: <u>Polka</u>
- After successful publication of Polka paper, it has been decided to implement this routing paradigm to RARE/FreeRtr routing stack

Figure 3. Edge-Core Experiment

Figure 4. RARE/GEANT testbed

Figure source: https://sol.sbc.org.br/index.php/wpeif/article/download/21490/21314/by Federal Institute of Education Science and Technology of Espírito Santo, and Federal University of Espírito Santo, Espírito Santo, Brazil

Packet Marking Specification: IPv6 Flow Label

- A packet marking technique proposed by the Research Network Technology WG
- Identifying the LHC experiment and the application that has generated a transmission packet
- The Experiment-Application tag inserted in the IPv6 packet header flow label field

Bits 12 - 13

Entropy

- Primary goal: traffic count, but special routing polices could be applied
- Flow label field of IPv6 header: 20 bits
 - 5 entropy bits to match RFC 6436
 - 9 bits to define the science domain

MultiONE multiple "LHCONEs": Traffic separation with IPv6 flow labels

 A prototype of a flow label router is being developed using a P4 programmable switch (EdgeCore Wedge100BF-32QS with an Intel Tofino processor)

SuperComputing22 Demo

Over **20** locations expected in the SC22 **Global P4Lab**, including the GÉANT P4 Lab Several areas in scope: Visibility, Intelligence, Controllability, NOS and tools, Orchestration In collaboration with the GNA-G Data Intensive Sciences Working group – GNA-G DIS WG

GNA-G

SC22: Global Petascale to Exascale Workflows for Data Intensive Sciences

- Advances Embedded and Interoperate within a 'composable' architecture of subsystems, components and interfaces, organized into several areas:
- Visibility: Monitoring and information tracking and management including IETF ALTO/OpenALTO, BGP-LS, sFlow/NetFlow, Perfsonar, Traceroute, Qualcomm Gradient Graph congestion information, Kubernetes statistics. LibreNMS, P4/Inband telemetry
- Intelligence: Stateful decisions using composable metrics (policy, priority, network- and site-state, SLA constraints, responses to 'events' at sites and in the networks, ...), using NetPredict, Hecate, RL-G2, Yale Bilevel optimization, Coral, Elastiflow/Elastic Stack
- Controllability: SENSE/OpenNSA/AutoGOLE, P4/PINS, segment routing with SRv6 and/or PolKA, BGP/PCEP
- Network OSes and Tools: GEANT RARE/freeRtr, SONIC, Calico VPP. Bstruct-Mininet environment, ...
- Orchestration: SENSE, Kubernetes (+k8s namespace), dedicated code and APIs for interoperation and progressive integration

RARE/freeRtr and GP4L at 3rd GRP (Salt Lake City)

(Thanks Ivana!)

Looking ahead

Validate your use case with GP4L!

Orchestrate and automate GP4L:

Lab reservation

Persistent testbed interaction at global scale

New hardware:

TOFINO2, NVIDIA DPU, P4 SmartNIC, TOFINO/FPGA

Global worldwide footprint:

Interconnection with other persistent testbed

? New idea:

Validate new use cases Focus on use case scalability 100/400 GE DTN automation Control plane scalability

And more ...

Useful Links

Documentation:

GP4L project: https://wiki.geant.org/display/GP4L/

RARE/FreeRtr: https://wiki.geant.org/display/RARE

https://blog.freertr.org

https://docs.freertr.org

https://blog.freertr.org

GÉANT NETDEV: https://wiki.geant.org/display/NETDEV

Contact:

Users: gp4l-users@lists.geant.org, rare-users@lists.geant.org

Developers: gp4l-dev@lists.geant.org, rare-dev@lists.geant.org

Project: gp4l@lists.geant.org, rare@lists.geant.org

Thank you

Any questions?

Email: netdev@lists.geant.org

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 3 project

The research leading to these results has received funding

the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 856726 (GN4-3).