

RARE / freeRtr

Frédéric Loui (RENATER)

10th SIG-NOC meeting

November 29 2022

On-line event

www.geant.org

Agenda

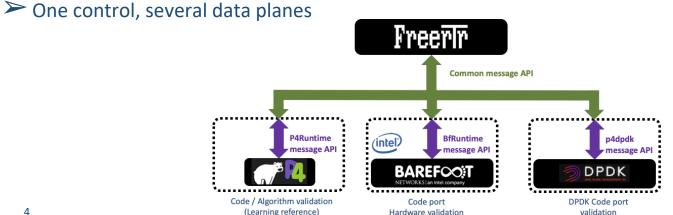
- RARE/freeRtr in a nutshell
- One control plane to rule them all (Or vice versa)
- A simple use case with RARE P4 program
- POLKA: A GP4L use case

Router for Academia, Research and Education (RARE)

RARE is an open source routing platform, used to create a network operating system (NOS) on commodity hardware (a white box switch).

RARE uses FreeRtr as a control plane software and is thus often referred to as RARE/FreeRtr

More information:


https://wiki.geant.org/display/rare

RARE/FreeRtr Basics

- Free and open source routing platform
- Controls the data plane by managing entries in Match Action Unit (MAU) tables
- Every routed interface must be in a virtual routing table, every layer interface in a bridge table

- Exports control plane computation results to DPDK or hardware switches.
- Uses Data Plane Programming (DPP) Language such as **Programming** Protocol-independent Packet Processors: P4 language

(Access layer)

(Core backbone use cases)

Programming Protocol-independent Packet Processors: P4 language

Language for **programming the data plane** of network devices

- Define how packets are processed
- P4 program structure: header types, parser/deparser, match-action tables, userdefined metadata and intrinsic metadata

Domain-specific language designed to be implementable on a large variety of targets

Programmable network interface cards,
 FPGAs, software switches and hardware ASICs

Programming Protocol-independent Packet Processors: P4 language

P4 Programmable Switches

EdgeCore Wedge100BF-32QS:

100GbE Data Center Switch

- Bare-Metal Hardware
- L2/L3 Switching
- 32xQSFP28 Ports

Data-Plane Programmability

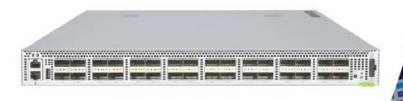
- Intel Tofino Switch Silicon
- Barefoot Networks

Quad-Pipe Programmable Packet Processing Pipeline

6.4 Tbps Total Bandwidth

CPU: Intelx86 Xeon 2.0GHz

8-core/48GB/2TB SSD

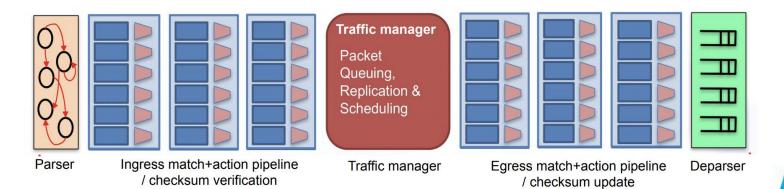


TOFINO 3[™]
25.6 Tbps
64x400 GE ports

TOFINO 1 [™] 6.4 Tbps

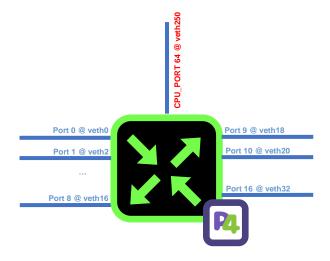
P4 Programmable Switches

TOFINO 1 [™] 6.4 Tbps


TOFINO 2[™] 12.8 Tbps 32x400 GE ports

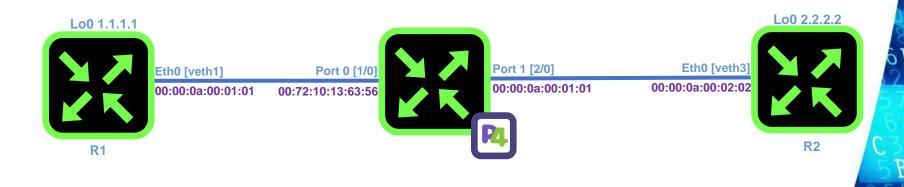
TOFINO 3[™] 25.6 Tbps 64x400 GE ports

Portable Service Architecture (PSA) model

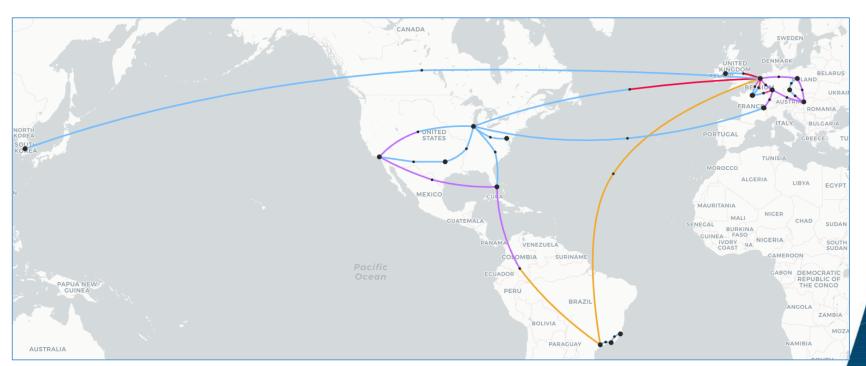


Slide courtesy P4.org

RARE P4 program (aka bf_router.p4) demo



bf_switchd target virtual model



RARE bf_router.p4

GP4L November 2022 during SC22!

Develop & test your P4 program with GP4L!

PolKA - Polynomial Key-based Architecture for Source Routing in **Network Fabrics**

- GP4L has been used to validate a <u>Research Paper</u> describing a innovative source routing paradigm: <u>Polka</u>
- After successful publication of Polka paper, it has been decided to implement this routing paradigm to RARE/FreeRtr routing stack

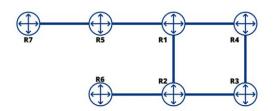


Figure 3. Edge-Core Experiment

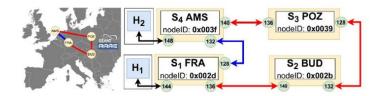


Figure 4. RARE/GEANT testbed

Figure source: https://sol.sbc.org.br/index.php/wpeif/article/download/21490/21314/by Federal Institute of Education Science and Technology of Espírito Santo, and Federal University of Espírito Santo, Espírito Santo, Brazil

Looking ahead

Validate your use case with GP4L!

Orchestrate and automate GP4L:

Lab reservation

Persistent testbed interaction at global scale

New hardware:

TOFINO2, NVIDIA DPU, P4 SmartNIC, TOFINO/FPGA

Global worldwide footprint:

Interconnection with other persistent testbed

? New idea:

Validate new use cases Focus on use case scalability 100/400 GE DTN automation Control plane scalability

And more ...

Key take-away

You are welcome to work with us!

- freeRtr is the most feature rich Open Source control plane
- It has **multiple** dataplanes
- RARE/freeRtr API can be used to « hook » new dataplanes
- RARE dataplane can be automated by your control-plane
- Advanced features are enabled with specialised hardware (FPGA/NIC/DPU/ASIC) at control-plane level or dataplane level

Useful Links

Documentation:

GP4L project: https://wiki.geant.org/display/GP4L/

RARE/FreeRtr: https://wiki.geant.org/display/RARE

https://blog.freertr.org

https://docs.freertr.org

https://blog.freertr.org

GÉANT NETDEV: https://wiki.geant.org/display/NETDEV

Contact:

Users: gp4l-users@lists.geant.org, rare-users@lists.geant.org

Developers: gp4l-dev@lists.geant.org, rare-dev@lists.geant.org

Project: gp4l@lists.geant.org, rare@lists.geant.org

Thank you

Any questions?

Email: netdev@lists.geant.org

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 3 project

The research leading to these results has received funding

the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 856726 (GN4-3).