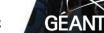


RARE and GÉANT (GLOBAL) P4 Lab (aka GP4L)


Ivana Golub (PSNC) Frédéric Loui (RENATER)

17th SIG-NOC meeting November 16-17 2022 Paris, France / RENATER

www.geant.org

GÉANT RARE P4 testbed

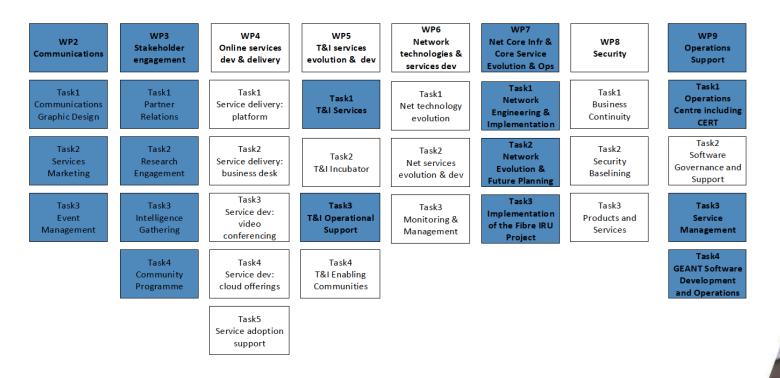
- GÉANT project environment
- RARE
- GÉANT P4 Lab
- Global P4 Lab
- GP4L Use Cases
- Looking Ahead
- IGP topology monitoring 2.0

The GÉANT Project

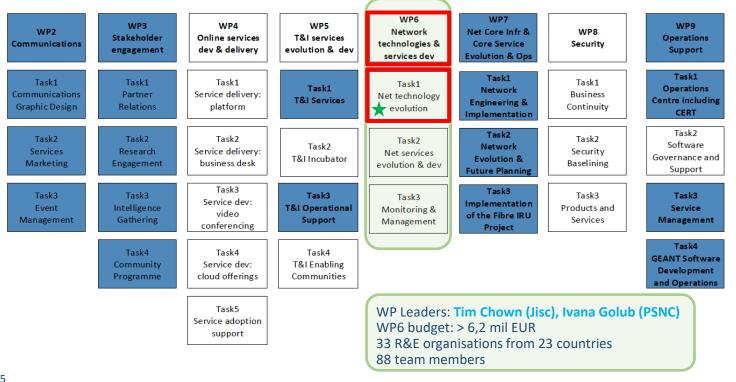
GÉANT's vision is to ensure **equal** network **access for all scientists across Europe to** the research **infrastructures and** the **e-infrastructure resources** available to them.

A part of the European Union's Horizon 2020 research and innovation programme - GÉANT 2020 Framework Partnership Agreement (FPA)

500 contributors from 40 partners - European R&E Institutions


50 M users

GN4-3 duration: 1 Jan 2019 – 31 December 2022


The GÉANT Project Structure

4

GÉ.

The GÉANT Project Structure

GÉ

Router for Academia, Research and Education (RARE)

RARE is an open source routing platform, used to create a network operating system (NOS) on commodity hardware (a white box switch).

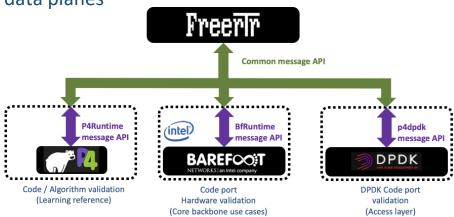
RARE uses FreeRtr as a control plane software and is thus often referred to as

RARE/FreeRtr

More information: https://wiki.geant.org/display/rare

www.geant.org

Why RARE?


- Needs of network-aware applications and application-aware network
- Reduce vendor lock-in
- Ability to implement ad-hoc features
- Ability for use-case based solutions
- Reduce digital divide with affordable network solution without functionality trade-off

RARE/FreeRtr Basics

- ➤ Free and open source routing platform
- Controls the data plane by managing entries in Match Action Unit (MAU) tables
- Every routed interface must be in a virtual routing table, every layer interface in a bridge table
- ➤ One control, several data planes

- Exports control plane computation results to DPDK or hardware switches
- Uses Data Plane Programming (DPP) Language such as Programming Protocol-independent Packet
 Processors: P4 language

www.geant.org

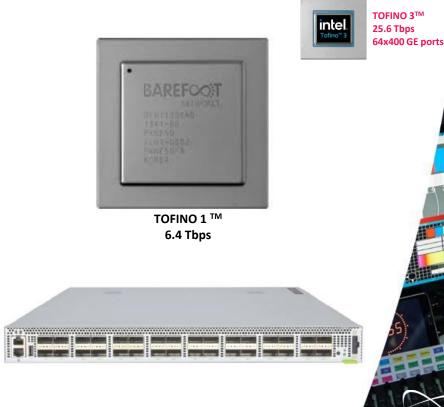
Programming Protocol-independent Packet Processors: P4 language

Language for **programming the data plane** of network devices

- Define how packets are processed
- P4 program structure: header types, parser/deparser, match-action tables, userdefined metadata and intrinsic metadata

Domain-specific language designed to be implementable on a large variety of targets

• Programmable network interface cards, FPGAs, software switches and hardware ASICs


TOFINO 2[™] 12.8 Tbps 32x400 GE ports

P4 Programmable Switches

EdgeCore Wedge100BF-32QS:

100GbE Data Center Switch

- Bare-Metal Hardware
- L2/L3 Switching
- 32xQSFP28 Ports
- **Data-Plane Programmability**
 - Intel Tofino Switch Silicon
 - Barefoot Networks
- Quad-Pipe Programmable Packet Processing Pipeline
- 6.4 Tbps Total Bandwidth CPU: Intelx86 Xeon 2.0GHz
 - 8-core/48GB/2TB SSD

GE

RARE IPv4/IPv6 Features

Include, but not limited to:

- Interior Routing Protocol
- Dataplane forwarding
- External Routing Protocol
- Link local protocol
- Network management

Supported platforms:

• BMv2, TOFINO, DPDK, XDP

List updated regularly:

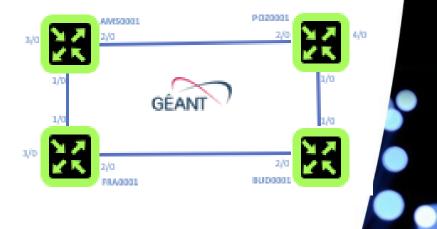
https://wiki.geant.org/display/rare

For more features or details, contact:

<u>rare-users@lists.geant.org</u>

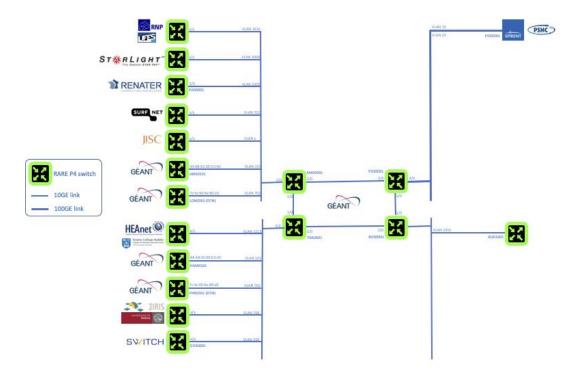
Complete feature list

Туре	Test #	Name	* R	00)	DPDK	XCID
acl	01"	сорр	0	0	0	69
acl	02"	ingress access list	0	0	0	69
acl	03"	egress access list	0	0	0	0
acl	04"	nat	0	0	0	0
acl	05"	vlan ingress access list	0	0	0	69
acl	06"	vlan egress access list	0	0	0	69
acl	07*	bundle ingress access list	0	0	0	0
acl	08"	bundle egress access list	0	0	0	6
acl	09"	bundle vlan ingress access list	0	0	0	0
acl	10"	bundle vlan egress access list	0	0	0	0
acl	11*	bridge ingress access list	0	0	0	0
acl	12"	bridge egress access list	0	0	0	0
acl	13"	vlan bridge ingress access list	0	0	0	69
acl	14#	vlan bridge egress access list	0	0	0	0
acl	15"	ingress pppoe access list	0	0	0	0
acl	16"	egress pppoe access list	0	0	0	69
acl	17*	ingress vlan pppoe access list	0	0	0	69
acl	18"	egress vlan pppoe access list	0	0	0	6
acl	19"	hairpin ingress access list	0	0	0	6
acl	20"	hairpin egress access list	0	0	0	69
acl	21"	hairpin vlan ingress access list	0	0	0	69
acl	22*	hairpin vlan egress access list	0	0	0	0
acl	23*	hairpin pppoe ingress access list	0	0	0	6
acl	24*	hairpin pppoe egress access list	0	0	0	6
acl	25*	hairpin vlan pppoe ingress access list	0	0	0	0
acl	26"	hairpin vlan pppoe egress access list	0	0	0	0
acl	278	ingress gre access list	0	0	0	0
acl	28*	egress gre access list	0	0	0	0
acl	29"	ingress vlan gre access list	0	0	0	•


GÉANT P4 Lab – GP4L

Initially aimed to **validate the RARE/FreeRtr** open source routing stack software

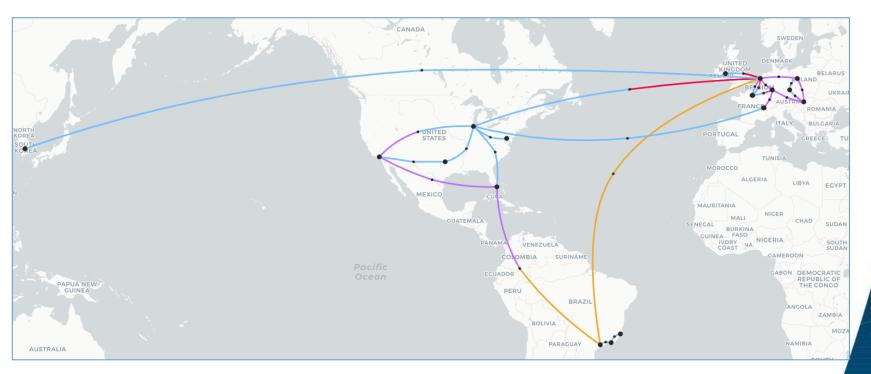
• 4 switches in Europe: AMS, POZ, FRA, BUD


With growing interest, offering **experimental dataplane programming facilities to researchers** to perform geographically distributed network experiments:

- With the usage of RARE/FreeRtr NOS
- Using a clean slate environment (i.e use exclusively GP4L without RARE/FreeRtr dataplane & control plane)

15|24L 15|2|111 |24 LIA|2

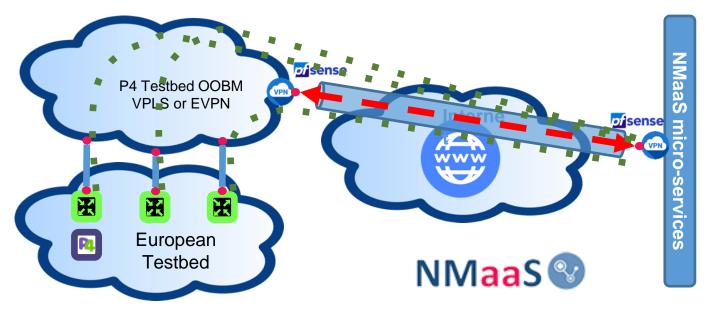
GP4L Going Global


GÉANT

6B73

B23

687


GP4L November 2022

www.geant.org

GP4L Monitoring and Management Using GÉANT NMaaS Service

Network Management as a Service: https://nmaas.eu https://wiki.geant.org/display/NMaaS

Network Management as a Service (NMaaS)

Network Management as a Service (NMaaS) provides a portfolio of network management applications run as dedicated per-user instances in the cloud.

GÉANT's NMaaS service includes three aspects: providing, managing and maintaining the infrastructure of the NMaaS service portal, platform and selected tools, supporting users in using the system, and the selected tools for monitoring their networks via NMaaS, as well as supporting users that contribute their software to NMaaS system.

Target users

NMaaS users are organisations that do not want to own NMS infrastructure themselves and/or want to outsource network management, as well as organisations and/or individuals that are searching for quality network management software or who want to share their software within the community.

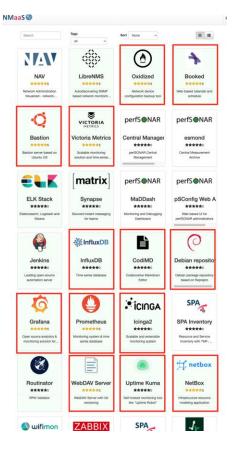
NMaaS Marketplace

NMaaS Marketplace is a catalogue of available open source tools, supported by community, distributed free, chosen by administration. There is also place for your application choice - you can propose new applications.

1 ×	_	
	_	
-		-
7		-

NMaaS is a platform for network management providing

- A portfolio of network management and monitoring applications
- Per-user, secured network monitoring infrastructure
- Dockerised images implemented through a Kubernetes cluster


NMaaS Usage

- On GÉANT instances or deployed locally
- NMaaS <u>sandbox instance</u> in GÉANT: <u>https://nmaas.geant.org/</u>
- NMaaS <u>production instance</u> in PSNC: <u>https://nmaas.eu/</u>

NMaaS Update

- Version 1.5.1 released
- The work on providing IPv6 support is ongoing
- <u>NMaaS OAV Architecture Analysis</u> was published

NMaaS Tools Portfolio for GP4L Monitoring and Management

Network Management as a Service: https://nmaas.eu https://wiki.geant.org/display/NMaaS

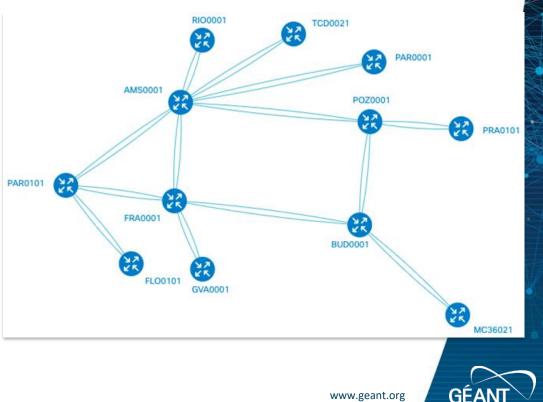
www.geant.org

2.0 2.1 2.

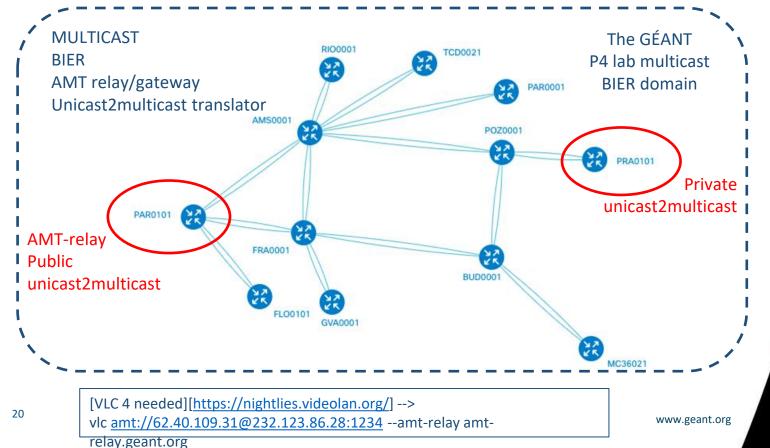
GÉAN

GP4L Use cases

- Topology Monitoring with BGP-LS
- Next Generation Multicast with AMT relay/gateway and Unicast to Multicast translator, Juniper and Akamai
- Polka an innovative source routing paradigm, IFES/UFES
- Packet Marking Specification: IPv6 Flow Label, CERN
- SuperComputing22 Demo, GNA-G DIS

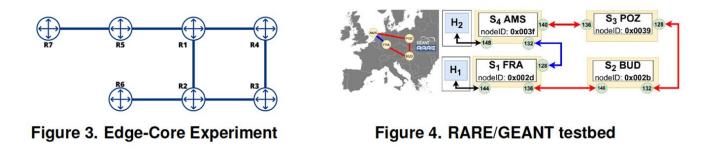


Topology monitoring with BGP-LS


Network topology rendering using **BGP-LS**

- BGP-LS feed translated to a JSON model
- The model then used to visualise as a map
- Per-minute updates

Available at: http://gp4l.geant.org


GP4L AMT relay / AMT gateway / Unicast --> Multicast

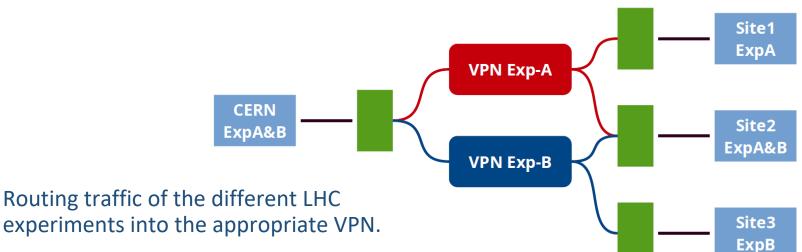
PolKA - Polynomial Key-based Architecture for Source Routing in Network Fabrics

- GP4L has been used to validate a <u>Research Paper</u> describing a innovative source routing paradigm: <u>Polka</u>
- After successful publication of Polka paper, it has been decided to implement this routing paradigm to RARE/FreeRtr routing stack

Figure source: https://sol.sbc.org.br/index.php/wpeif/article/download/21490/21314/ by Federal Institute of Education Science and Technology of Espírito Santo, and Federal University of Espírito Santo, Espírito Santo, Brazil

21

www.geant.org


Packet Marking Specification: IPv6 Flow Label

- A packet marking technique proposed by the Research Network Technology WG
- Identifying the LHC experiment and the application that has generated a transmission packet
- The Experiment-Application tag inserted in the IPv6 packet header flow label field
- Primary goal: traffic count, but special routing polices could be applied
- Flow label field of IPv6 header: 20 bits
 - 5 entropy bits to match RFC 6436
 - 9 bits to define the science domain
 - bits to define the application/type of traffic

	36	288		
affic Bits 12 - 13 Entropy	Bits 14 - 22 Science Domain	Bit 23 Entropy	Bits 24 - 29 Application	Bits 30 - 31 Entropy
	Astro/HEP Science Domains: Reserved = 0 Default = 65536 ATLAS = 32768 CMS = 90304 LHCb = 16384 ALICE = 81920 Bellell = 49152 SKA = 114688 LSST = 73728 DUNE = 8192		Application: Reserved - 0 Default - 4 perfSONAR - 8 Cache - 12 DataChallege - 16	

Designation ad

MultiONE multiple "LHCONEs": Traffic separation with IPv6 flow labels

 A prototype of a flow label router is being developed using a P4 programmable switch (EdgeCore Wedge100BF-32QS with an Intel Tofino processor)

GÉANT

SuperComputing22 Demo

Over **20** locations expected in the SC22 **Global P4Lab**, including the GÉANT P4 Lab Several areas in scope: Visibility, Intelligence, Controllability, NOS and tools, Orchestration In collaboration with the GNA-G Data Intensive Sciences Working group – **GNA-G DIS WG**

SC22: Global <u>Petascale</u> to <u>Exascale</u> Workflows for Data Intensive Sciences

Advances Embedded and Interoperate within a 'composable' architecture of subsystems, components and interfaces, organized into several areas:

- Visibility: Monitoring and information tracking and management including IETF ALTO/OpenALTO, BGP-LS, sFlow/NetFlow, Perfsonar, Traceroute, Qualcomm Gradient Graph congestion information, Kubernetes statistics, LibreNMS, P4/Inband telemetry
- Intelligence: Stateful decisions using composable metrics (policy, priority, network- and site-state, SLA constraints, responses to 'events' at sites and in the networks, ...), using <u>NetPredict</u>, Hecate, RL-G2, Yale Bilevel optimization, Coral, <u>Elastiflow</u>/Elastic Stack
- Controllability: SENSE/OpenNSA/AutoGOLE, P4/PINS, segment routing with SRv6 and/or PolKA, BGP/PCEP
- Network OSes and Tools: GEANT RARE/freeRtr, SONIC, Calico VPP, Bstruct-Mininet environment, ...
- Orchestration: SENSE, Kubernetes (+k8s namespace), dedicated code and APIs for interoperation and progressive integration

www.geant.org

Slides: by courtesy of Harvey Newman, Caltech

RARE/freeRtr and GP4L at 3rd GRP (Salt Lake City) (Thanks Ivana !)

www.geant.org

GÉ

Looking ahead

Validate your use case with GP4L!

Orchestrate and automate GP4L: Lab reservation

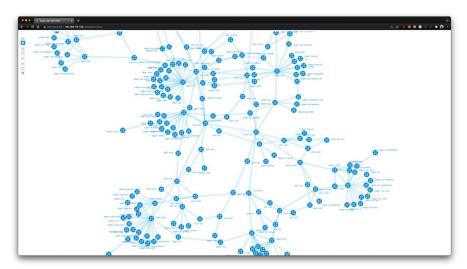
Persistent testbed interaction at global scale

New hardware: TOFINO2, NVIDIA DPU, P4 SmartNIC, TOFINO/FPGA

Global worldwide footprint: Interconnection with other persistent testbed

New idea:
Validate new use cases
Focus on use case scalability
100/400 GE DTN automation
Control plane scalability

And more ...



www.geant.org

IGP topology monitoring 2.0

• IGP topology monitoring

- Next generation alarm notification system
- Map physical circuit when it maps IGP topology
- Applicable to 1 or ... thousands of nodes

GEAN

IGP topology monitoring 2.0 (Recipe in 3 steps)

- Deploy RARE/freeRtr in your network
 - <u>1</u> server or VM <u>only</u>
 - Insert it into your IGP
- On RARE/freeRtr CLI:
 - server nrpe <my_server>
 - Define event you are interested globally:
 - check <my_check>
- On your **NRPE** system (ICINGA2)
 - Configure the notification event matching <my_check>
 - Bind to your favorite communication client available from your NRPE system
 - Slack, Matrix client, email. SMS, phone etc.

IGP topology monitoring 2.0

- _MUST_ have:
 - if you don't have existing alarms notification system
 - <u>Add</u> an additional non intrusive lightweight alarm notification system
 - <u>**Replace**</u> your existing alarm system by a lightweight and cost effective system
 - You want to redirect alarm to specific groups ...

Cost effective (almost 0 CAPEX) !!!!!

Useful Links

Documentation:

GP4L project:	https://wiki.geant.org/display/GP4L/
RARE/FreeRtr:	https://wiki.geant.org/display/RARE
	https://blog.freertr.org
	https://docs.freertr.org
	https://blog.freertr.org
GÉANT NETDEV :	https://wiki.geant.org/display/NETDEV

Contact:

Users:	gp4l-users@lists.geant.org, rare-users@lists.geant.org
Developers:	gp4l-dev@lists.geant.org, rare-dev@lists.geant.org
Project:	gp4l@lists.geant.org, rare@lists.geant.org

Thank you

Any questions?

Email: netdev@lists.geant.org

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 3 project (GN4-3). The research leading to these results has received funding

from

the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 856726 (GN4-3).