

TimeMap Update

Fabio Farina (GARR)
And GN5-1 WP6 T3 team

TimeMap-dev@lists.geant.org

www.geant.org

Outline

- Why TimeMap
- Current status
- Recent developments on
 - Data acquisition
 - Anomaly detection

Why TimeMap: the road-trip analogy

How is the road ahead today? And how is it is in average?

it may be nice ...

Or lots of Stop & Go

Network Traffic: what do we usually have?

But this is OK for bulk data transfers

NOT for real time applications which are sensitive to Latency & Jitter!

We need to monitor "the hidden":

- latency
- jitter

We need to keep track of "the hidden": TimeMap

historic series

We need to find anomalies in "the hidden"

- machine learning
- alarms
- call the right NOC for the right network segment

www.geant.org

TimeMap instance for the GEANT backbone

The service on GEANT backbone

https://timemap.geant.org/

• Documentation: source code, user and admin guides, customization

https://gitlab.geant.org/gn4-3-wp6-t1-lola/timemap_public

The entry map page: click on link

Observations

Re-routing

ECMP effects

Trends (clocks shifting?)

Anomaly Detection in action

TimeMap technical requirements

- Scalable micro-services, easy to deploy, minimal custom code
- As neutral as possible: monitoring standards and FOSS

- Security, with federated access control
 - eduGAIN authentication
 - Role Based Access Control, API tokens, multi-tenancy

• Dynamic: almost no changes needed when networks change

TimeMap architecture – 1+ year of data taking

Anomaly Detection in Timemap – toolset

Anomaly Detection, in short

Std.Dev classification

Unsupervised

Sensible to overfit

3*σ* 3*σ*

- Streaming Machine Learning
- Light footprint
- Python https://riverml.xyz

Half-space Random Trees

Model bagging

One-class Support Vector Machine

On-going – Juniper Twamp probes refactoring

Benefit from latest libraries for SNMP, gNMI, TWAMP

- Reduce further the ad hoc code
 - Same features, from 250 to 100 lines of code
 - Simpler to read and maintain
- Baseline code for new probes

On-going: preparing for upcoming new use cases

- Codebase fork for T/F use case
 - New probes for the Flywheels, and other devices if needed
 - Dedicate topology with custom dashboards
- Paving the way for the next GEANT backbone
 - Adapt Twamp probe to support Nokia devices
 - Interoperability tests
 - Juniper -> Juniper: TWAMP
 - Juniper -> Nokia: TWAMP (Juniper Client, Nokia Server)
 - Nokia -> Nokia : TWAMP-lite

On-going: Anomaly Detection

- Issues with current models
 - Overfitting and concept drifting
 - Identify when anomalies end
- Enhanced ML models
 - Augment current models with Nowcasting
 - Short range timeseries prediction training/inference loops
 - Models selection & hyperparameters optimization
- Scouting novel deep learning approaches
 - Digital twin through Temporal Graph Neural Network

Thank you! Questions?

Fabio.Farina@garr.it
timemap-dev@lists.geant.org

www.geant.org

© GEANT Association
As part of the GÉANT 2020 Framework Partnership Agreeme
(FPA), the project receives funding from the European Unior
Horizon 2020 research and innovation programme under Gr