

White-Box for NREN

GN4ph3: Objective and strategy

JEANNIN Xavier WP6T1 task leader

STF meeting, Bucarest, 26/02/2019

Public

www.geant.org

White Box: What is it?

• A Buzzzzzzz Word

- A pragmatic approach driven by NREN use cases
- Put in « **production** » if operation constraints are satisfied

www.geant.org

White Box: What is it?

 A switch/router that is able to run different Network Operating System (NOS)

• The key idea is to be independent from traditional hardware vendors. Disagregation trend between Network Operating System and hardware

\rightarrow 2 levels of independence :

- independence from the hardware
 - you can change the hardware vendor and keep the software
- independence from the NOS
 - you change the NOS and keep the hardware

www.geant.org

Proprietary design

- Business model
 - 1. Hardware design Proprietary
 - 2. Proprietary NOS (embedded)
 - 3. Hardware maintenance
 - 4. NOS maintenance
- Dependence from one vendor

B23

White-box Design

- Same ASICs as in many well-known vendors which use off-the-self/commodity ASICs
 - Juniper/Cisco use the same chipset
- Performances and features depend on forwarding chipset (switching ASIC) and the NOS
 - Trident, Trident 2, Tomahawk, Qumran, Jericho
 - Commercial and open source NOS
- New business model
 - 1. Hardware design Proprietary and Hardware maintenance
 - 2. NOS (embedded) and NOS maintenance

Current White Box

Edgecore Wedge100BF-32X, 32x100GbE QSFP28 ports, Barefoot Tofino 3.2T, Intel Broadwell DE, Dual AC PSU

• Issue mainly from the data-center world

- Switch with very powerful forwarding capacity and limited number of features
- Cost effective
- New product for network provider
- The architecture of data-center, regional network and telecom carrier become very similar

Routing landscape is changing fast

- Router vendors use ASICs as in many well-known vendors which use off-the-self/commodity ASICs

- The market is driven by data-center
 - Architecture of data-center, regional network and telecom carrier become very similar
- Traditional data-center switch vendor want to enter into the market
- Very cost effective
- Classical vendors will not stay without any reactions
 - Price of legacy vendor box is already decreasing a lot
 - They have already a white offer

7

White Box: a trend

- ACCTON, Edge-Core, DELL, ...
 - Cloud, Large Data-Centers
- But also traditional router vendor start ...
 - JUNOS OS FOR WHITE BOX DATA CENTER SWITCHES
 - <u>Https://www.juniper.net/assets/us/en/local/pdf/datasheets/1000641-en.pdf</u>
 - Enabling IOS-XR on Third-Party Network Hardware
 - https://xrdocs.io/cloud-scale-networking/blogs/2018-03-08-enabling-ios-xr-on-third-party-network-

Native

NOS installer

contains everything

Host CPU x86

FAN, PS, EEPROM,

PCIe, i2c, serial

JUNOS OS FOR WHITE BOX DATA CENTER SWITCHES

Product Description

As cloud computing becomes more pervasive, service providers, cloud operators, and enterprises alike are seeking to deploy more scalable, agile, and automated data center architectures that employ standards-based network protocols and standards-compliant hardware.

Network Operating System

NOS		commentaires				
DELL	Commercial	- Linux + Quagga + BGP EVPN (VXLAN ?)				
OS9 ou OS10 (Free BSD)						
Cumulus Networks	Commercial	- Unix + CLI → Data center				
IP Infusion	Commercial	- NOS for network operator				
OcNOS		- Still limited feature (see GN4ph2 report)				
Pluribus Networks	Commercial	- SDN solution but controller is embedded in each box				
NetVisor		- Specific new features: data analytics, service chaining and VNF				
		functions				
Open Network Linux	Open / Free	- https://opennetlinux.org/				
Barefoot networks	Open et peut être	- The future ?				
Sur chipset Tofino	commercial	Based on P4 chipset : Telemetry, DDOS mitigatos, load balancer,				
Pica8	Commercial	Hybrid Networking: OpenFlow agent, with native L2 and L3 features				
PicOS	Commercial	Hybrid Networking. OpenFlow agent, with hative L2 and L5 reatures				
PICOS						
Big Switch Networks	Commercial	SDN Solution				
SwitchLight						
Canonical Snappy	Commercial					
Ubuntu Core						
Software for Open Networking in the Cloud	Open	Microsoft and co-contributors to OCP				
SONIC		Orienté cloud pour AZUR				
OpenSwitch	Open	Few features but very fast				
SnapRoute FlexSwitch	Open					
Open Network Foundation Atrium SDN	Open	- CORD use case				
Distribution						
Open Compute Project	Open	Mothership project :				
http://www.opencompute.org/		- Campus Branch Wireless (CBW)				
projects/networking/		- Open Network Install Environment (ONIE)				
		- Open Network Linux (ONL)				
		- SONIC	3			
		- Switch Abstraction Interface (SAI)				

GÉANT

White-box architecture

GÉAN

Chipset characteristics

- Buffer and memory
 - Packet queue length
- Route number limited in FIB
 - For instance, Trident2 is limited to around 200 000 FIB routes
- The same limitation can be seen traditional vendor device that use Trident2 (FIB, TCAM ACL rules, ECMP on VXLAN)

S4048-1#show for	rwarding profi	le limit.	arding profi	le : l2-pro	file-three(A	ctive in hardwar	e)	
Configured prot Forwarding prot				in hard	ding Profile ware) Host Tab			
 	Forward	ling Profi	le Table	e Size				
 Profile Name	MAC-Table	Host-1	able			Prefix-Tab	ole	
	MAC ADDR I	PV4 UC	IPV6 UC	IPV4	IPV6 (<=64)	IPV6 (>=65)	128k 10K	
<pre>l2-profile-one l2-profile-two l2-profile-three l3-profile l3-128bit-profil lpm-profile lpm-128bit-prof:</pre>	96k Le 96k 32k	16k _{fo} 80k 144kan 208k 208k 16k 16k	rour 8k d 40k the 72kt o 104k 104k 8k 8k 8k	edic 16k 16k 16k 16k 256k 128k	o the b ^{8k} kb our <u>W</u> 8keB 8k 4k 128k 16k	ione, v <mark>0k</mark> chang 0k inc0kse. 0k 41 2k 0k 16k		
84048 - 1#								

Example cost analysis gathered on the Web

Traditional, White-Box and Brite-Box switching models

Source: Gartner (December 2014)

"brite box" = branded white box

12

Our approach

- Assess white-box use in NREN context \rightarrow <u>WB deployment</u>
 - Explore NREN-relevant use cases: Data-centre, IX router, CPE, P router, ...
 - With the objective to deploy them in production
- White box programmability → <u>Data Plane Programming</u>
 - New usage: Monitoring, Security
 - Router for Academic, Research and Education (RARE)
- Concentrate the effort over the next 2 years

Lessons learnt

- Management Plane (Operation, automation, security), documentation, maintenance model are mandatory
- White Box adoption/uptake strategy is a key point
- Do not expect better that you have
 - <u>Same will be a great</u> result
 - <u>New usage/feature will be a breakthrough</u>

Lesson learnt

- White box will not replace our Juniper or Cisco boxes in a first stage
 - Instead move specific services on white box: GIX, LHCONE, ...
- A long term approach is necessary
 - Linux does not replace Solaris in one year
 - The landscape is changing continuously
- Not a reversible path?
 - For White Box
 - For data plane programming

WB deployment: Scope of our work

- Switch with Linux on which you can download your NOS
- Switch with ONIE
 - DELL, Edge Core, ...
- A X86 server than run several NOS

R&E use cases

- NREN backbone (PE and P routers)
- Regional network
- Campus network
- Science project
- Global Internet eXchange (GIX)
- Cloud Fabric
- New usages
 - Monitoring, Telemetry
 - Security

DDoS Detection

Access Switch

APC

IPNHO LLR

TRENATER

_ կ<u>_</u>գլ

GÉANT

LHCOPN

Ootical Backu

Use cases handled by WP6T1 WB deployment

- Internet eXchange point
 - SFINX, RENATER Internet eXchange point (Paris/2 locations)
- CPE
 - High school in Normandy Region (France) RENATER
 - FUnet
- Data Center
 - Normandy Region (France) RENATER
 - GRnet
- P router PSNC

CPE project in France

- A X86 server with a NOS can be considered as White Box
 - Limited number of use-cases due to performance

Internet eXchange Point

GÉAN

Data-center Normandy project

WB : Datacenter switching Goals

· Cost reduction

this is the main objective : the initial vendor solution cost 200k€ for around 1500 1Gbit ports

Interoperability

- separate hardware from software is interesting when upgrading or extending part of the infrastructure
- avoid vendor lock situation especially when it comes to big infrastructure
- · Automation and orchestration
 - no more CLI configuration
 - network configuration will be driven by application services

GRNET data center projet - IP Fabric topology

GRNET whiteboxing testbed

- Spine & Leaf topology
- □ SPINE: Tomahawk ASIC
 - nx40G uplink to GRNET DC routers
 - nx100G uplink to GRNET L2 core SDN
- LEAF: Trident2+ or Maverick
 2x40G uplink
- □ Server:
 - □ 2x1/10G UTP
 - Multihoming: In pairs of racks
 - LACP or Active-Backup

Condition to adopt white-box model?

- Identify a first use case
 - The same services that NRENs provide to theirs end-users?
 - OR a new service?
- Use Case validation
 - Feature?
 - Performance?
 - Maturity and Reliability?
 - What is missing in an open network operating system before going into production?
 - Manageability, Open network operating system security, Documentation, Maintenance model
 - •
- Transition model that could be put in place in order to go in production?
- What is the total cost ownership for such technology?

WB deployment strategy

- Identify appropriate use cases that will be put in production
 - White Box adoption/Uptake strategy
- Technical validation
 - Methodology
- Business model
 - Licence model and TCO
- Deployment plan
- Qualification for production
- Production

White Box Programming – Data Plane Programming

- Data Plane Programmable P4 language
 - Based on PISA architecture [Protocol-Independent Switch Architecture], FPGA, Open VSwitch Tofino chipset barefoot network (<u>https://www.barefootnetworks.com</u>)
- Application
 - Monitoring: Advanced Network Monitoring/Telemetry
 - Security: In-Network DDoSDetection
 - Performance: Layer 4 Load Balancer
 - Analytics

https://p4.org/ www.geant.org

World of P4 Advanced Apps

P4 Workflow

www.geant.org

GÉANT

Data Plane Programming (DPP) and P4 language

• DPP advanced feature

- Coordinator: Mauro Campanella
- Objectives: Explore new feature provided by programmable white box
 - Monitoring
 - Security (DDOS)

Router for Academic, Research and Education (RARE)

- Coordinator: Frédéric Loui
- Objectives: Demonstrate the feasibility of a router for academic community
 - Data plane: DPP
 - Interaction control plane and Data plane

Summary

- The routing landscape is changing fast
 - Especially in data-center ...
 - Business model Cost New NRENs (African countries,)
- WB deployment
 - Test and put in production WB in NREN use cases context
- WB programmability
 - Investigate new usage: first Monitoring and security
 - Open source router for academic and research
 - Universities are very interested for its own research in developing P4 usage
 - Build a community around white-boxing

Building a community around white boxing

- Workshop and dissemination:
 - White-Boxing: 4th April 2019, SUNET, Stockholm, (before SIG-NGN)
 - P4 Programming: 20th June TNC19, BoF exploring R&E community use cases
- Feedback from our community
 - NREN
 - Education and Research community

Thank you

Any questions?

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 3 project (GN4-3). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 856726 (GN4-3).