TNC 2021 P4 and Data Plane Programming BoF June 18, 2021

PolKA: Polynomial Key-based Architecture for Source Routing

<u>**Cristina Dominicini**</u>¹, Rafael Guimarães¹, Diego Mafioletti¹, Magnos Martinello², Moises R. N. Ribeiro², Rodolfo Villaça², Frédéric Loui³, Jordi Ortiz⁴, Frank Slyne⁵, Marco Ruffini⁵, and Eoin Kenny⁶

> ¹Federal Institute of Espírito Santo, ²Federal University of Espírito Santo, ³RENATER, ⁴University of Murcia, ⁵Trinity College Dublin, and ⁶HEANET

> > Contact: cristina.dominicini@ifes.edu.br

The University of Dubl

Motivation

- SDN and Programmable Network Devices:
 - Innovation and custom protocols.
- **Challenge**: How to select paths and load-balance between them to adapt to variable workloads?
 - **Common solution**: encode multiple paths in core nodes as forwarding **table entries**, and allow the edge to select among them.

• Problems:

- Large number of states \rightarrow Management burden
- \circ Restricted capacity of switch tables \rightarrow Traffic engineering cannot exploit all paths
- Latency for path setup

Source Routing (SR)

- A source specifies all forwarding nodes in the path.
- A route label is added to the packet header.
- Traditional way: List-based SR (LSR)
 - The path is defined as a stack of output ports.

• Limitations:

- State in the packet:
 - Each node performs a pop on the stack.
 - Rewrite operation.
- No implicit way of representing multiple paths.

PolKA

• Problem: Is it possible to define a fully stateless SR approach?

- No packet rewrite, No tables
- ... and offer support for complex use cases...
- NetSoft 2020: "PolKA: Polynomial Key-based Architecture for Source Routing in Network Fabrics"
 - Source Routing based on a arithmetic operation
 - Residue Number System (RNS) and Chinese Remainder Theorem (CRT)
 - Emulated proof-of-concept in Mininet
- ONDM 2021: "Deploying PolKA Source Routing in P4 Switches"
 - Deployment in the GEANT P4 Lab testbed with Tofino switches
 - PoC of PolKA in real-world environment

PolKA: Architecture

Motivation

Conclusions 5

PolKA: Data Plane

• The forwarding uses a **mod** operation (remainder of division):

portID = < routeID >
nodeID

- P4 language does not support the mod operation.
- Solution: reuse CRC hardware (Cyclic Redundancy Check)
 - The Tofino Native Architecture (TNA) supports custom CRC polynomials.

- In a network configuration phase, the Controller assigns irreducible polynomials to core switches (*nodelDs*).
- Port labels are represented as binary polynomials (*portIDs*).

- The **Controller** chooses a **path** for a specific flow (proactively or reactively):
 - A set of switches: {0011,0111,1011}
 - and their output ports: {1, 10, 110}

nodeID polynomials

 $s_2(t) = t^2 + t + 1 = 111$

 $s_1(t) = t + 1 = 11$

• The **Controller** calculates the *routeIDs* using the polynomial **Chinese Remainder Theorem**.

• The **Controller** installs **flow entries** at the edges to add/remove *routeIDs*.

• When packets arrive, an action at ingress embeds *routeID* into the packets.

- Forwarding using **mod** operation: $<10000>_{0011} = 1 \rightarrow output port$
- No packet rewrite! No tables!

- Forwarding using **mod** operation: $<10000>_{0111} = 10 \rightarrow output port$
- No packet rewrite! No tables!

- Forwarding using **mod** operation: $<10000>_{1011} = 110 \rightarrow output port$
- No packet rewrite! No tables!

• Finally, an action at edge egress node removes *routeID*.

Packet is delivered to the application in a transparent manner.

GÉANT P4 Lab Testbed

- RARE project: <u>https://wiki.geant.org/display/RARE</u>
- Testbed with Intel/Tofino Barefoot P4 Switches

Motivation

Preliminary Results

- Throughput & Forwarding Latency:
 - PolKA matches the performance of traditional L2 table-based forwarding and LSR approaches.

Proposal

Prototype

Preliminary Results

- Agile Path Reconfiguration:
 - SDN Controller changes a single flow entry at H1: path is reconfigured from shortest to longest path.

Future Works

- We are integrating PolKA in RARE repository for experimenters.
 - Extension of control planes functionalities.
- We are preparing deployment guidelines for production use cases.
- This proposal was one of the recipients of the 2021 Google Research Scholar Award.
- We are also exploring PolKA properties for innovative applications.
 - Security and Fast Failure Reaction exploring RNS properties.
 - Multipath Routing.
 - o ...

Future Works: Multipath Routing

• Extension: the *portid* coefficients represent the transmitting state of the ports instead of port labels.

Future Works

- Polynomial representation
 - Polynomials of higher orders for **Multi-layer Networks and Slicing**
- Use of multiple keys
 - **Protection paths**
 - QoS
- Source Routing
 - Service Function Chaining
 - Save TCAM for hybrid operation with table-based approaches
 - Agile Path Reconfiguration

Ethernet	version	routelD)	erouteID	IP	data
Ethernet	version	trafclassID	routeID	IP	data	
Ethernet	version	segID	routeID	IP	data	

TNC 2021 P4 and Data Plane Programming BoF June 18, 2021

Thank you!

Cristina Klippel Dominicini

cristina.dominicini@ifes.edu.br

The University of Dubl