Wi-Fi Network Monitoring with GÉANT WiFiMon

18-OCT-2023

Nikos Kostopoulos (NTUA/GRNET, Greece) Elisantila Gaci (RASH, Albania)

Introduction

WiFiMon GÉANT Service

- Monitoring Wi-Fi performance as experienced by end users
- Combination of crowdsourced & hardware probe measurements
- IEEE 802.1X networks (eduroam): Data from RADIUS & DHCP logs for richer analysis, e.g. per Access Point (AP)

Contribution:

- Detection of Wi-Fi throughput degradation
- Determination of underperforming areas within a Wi-Fi network
- \rightarrow Admins may enhance performance, e.g. by installing more APs

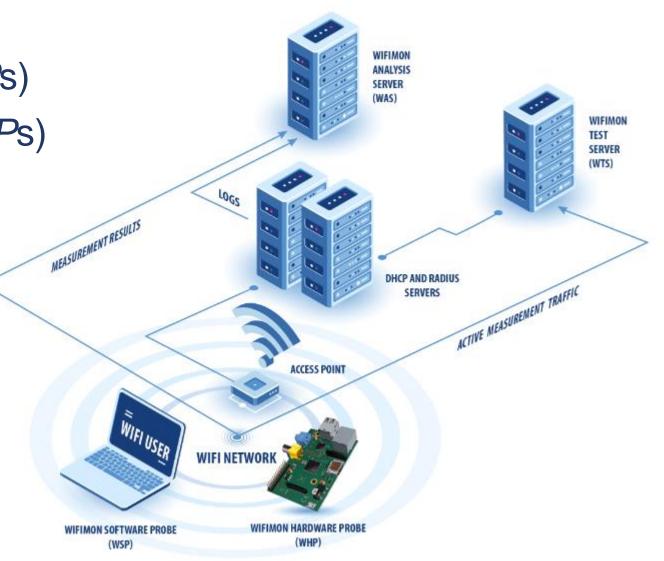
WiFiMon vs Related Monitoring Tools

• Monitoring from the end-user perspective (*end-user experience*)

• No requirements for app installation or end-user intervention

• Centralized view of Wi-Fi performance available to the administrator

Example: WiFiMon vs Ookla Speedtest


	WiFiMon	Ookla Speedtest
Measurements are triggered:	Automatically by visiting a site	By pressing "GO"
Results collected by:	Wi-Fi administrator	End users

WiFiMon Operation

WiFiMon Components:

- WiFiMon Software Probes (WSPs)
- WiFiMon Hardware Probes (WHPs)
- WiFiMon Analysis Server (WAS)
- WiFiMon Test Server (WTS)

Components

WiFiMon Test Server (WTS)

Purpose: Holds code and test data for performance measurements

- Based on JavaScript (JS) technology
- *HTML* script tags pointing to test tools added to frequently visited sites

2 available test tools:

Akamai Boomerang LibreSpeed Speedtest

WTS Placement: Close to the monitored networks
 (*RTT* between end devices and *WTS* included in results)
 → If impossible: WiFiMon captures relative performance changes

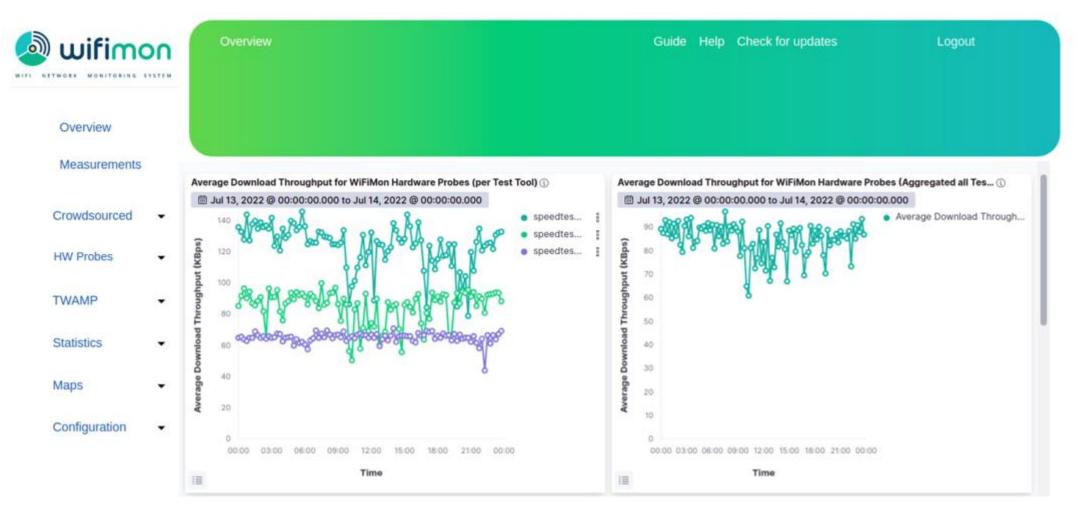
WiFiMon Software Probes (WSPs)

End-user devices

- Crowdsourced measurements triggered against the WTS when users visit a WiFiMonenabled site
- No requirement for additional software within user devices
- Repetitive measurements regulated via a cookie value

WiFiMon Hardware Probes (WHPs)

- Wi-Fi performance measurements from **fixed points** within the network
- Baseline throughput that complements crowdsourced measurements
- Performance measurements similar to WSP ones
- Additional data about monitored and nearby ESSIDs
- *TWAMP* Measurements, System data (CPU, memory, etc)


Triggering measurements based on *crontabs*

Tested for Raspberry Pi v3 and v4

WiFiMon User Interface (1)

Results per WHP

Aggregated Results

WiFiMon User Interface (2)

Dashboards available for:

- Average values
- Median values
- Maximum values
- Minimum values
- 95th Percentile values

Depicting estimations of:

- Download throughput
- Upload throughput
- HTTP ping Round Trip Time (RTT)

That may be:

- Uncorrelated
- Correlated with the available APs

Sources:

- Crowdsourced measurements
- Hardware Probe measurements

Correlation with RADIUS/DHCP Logs

Logs are:

- Extracted from RADIUS/DHCP servers using Filebeat
- Processed and transformed by Logstash in WAS
- Stored in *Elasticsearch* of WAS

Correlation options:

- With end-user IP address (only RADIUS logs)
- With end-user MAC address (both RADIUS & DHCP logs)

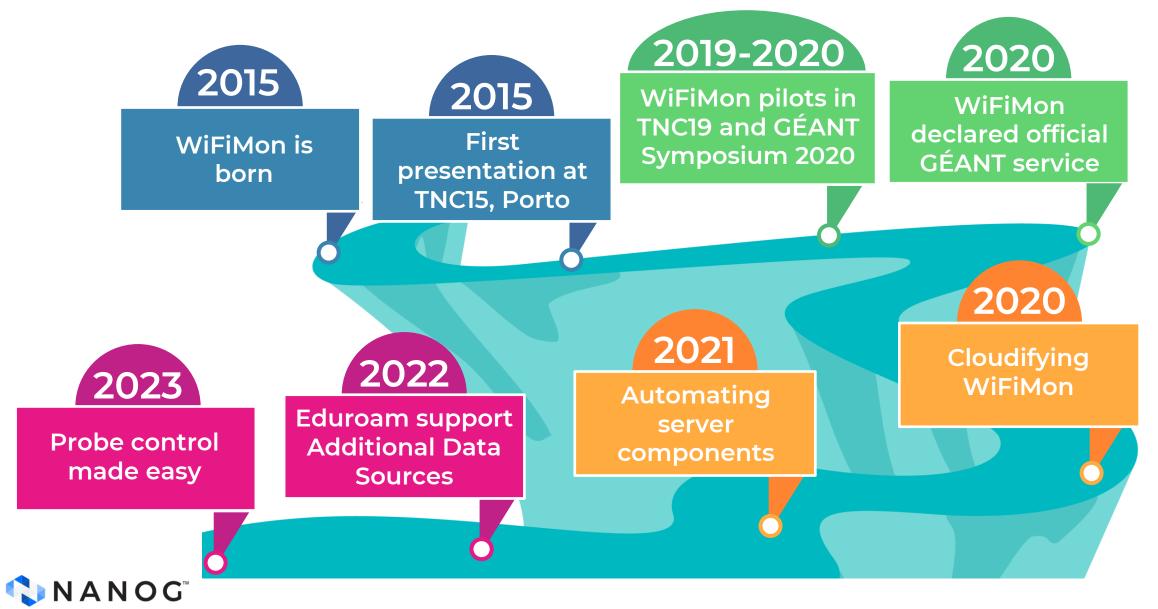
Personally Identifiable Information: IP/MAC addresses secured in transit using TLS-encrypted channels and stored hashed in WAS (X-Pack)

Installation

Installation Options

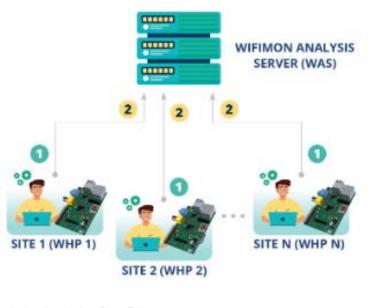
- Institutions install all components on their premises
 - Ansible playbook for WAS/WTS automated installation
 - All data stay within the institution premises

- **NMaaS** (simpler option for testing/trying WiFiMon)
 - Another GÉANT Service
 - WiFiMon WAS instance deployed on NMaaS
 - WTS installation still required by institutions (should be close to the monitored network)


Manual WAS installation: Abandoned by WiFiMon

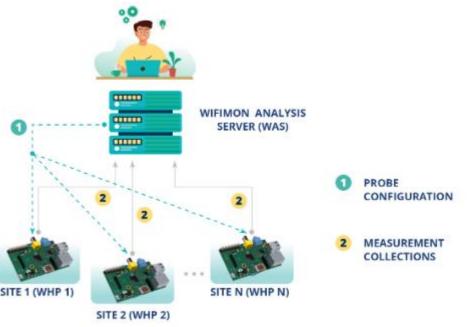
WiFiMon Evolution

WiFiMon Evolution



WHP Configuration & Control

Old approach


Administrator feedback demonstrated **limitations**:

- In NAT networks
- In public networks
- Administrators edit config directly

Novel approach required!!!

- → Remote & user-friendly configuration of WHPs from a central point (WAS)
- → Flexibility to control WHPs behind NAT networks

Configuration Made easy

WIFIMON HARDWARE PROBE CONFIGURATION PAGE

Full in the following information to configure the probe

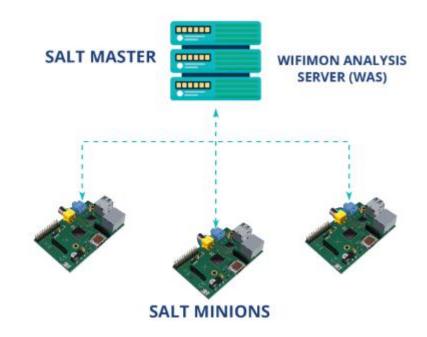
PROBES ARE IDENTIFIED BY AN INTEGER NUMBER

Insert WiFiMon Hardware Probe number:

Administrators (re)configure WHPs from the WiFiMon UI

Provided data:

- Device ID
- FQDNs/IP addresses of WiFiMon components
- Location information


Configuration files are generated based on *Jinja2* templates

Remote Configuration Made Possible

Salt establishes application layer communication:

- WHPs remotely configured from the WAS
- Reconfiguration easier for WHPs behind NAT
- Public IP addresses not required
 → IP space is conserved
- Salt includes a ZeroMQ message broker: Parallel configuration regardless of the WHP number
- Configuration files generated from templates transferred from the WAS to WHPs

1

Homepage: https://wiki.geant.org/display/WIF

WiFiMon mailing list: wifimon-ops@lists.geant.org

Thank you

18-OCT-2023

