

WiFiMon ASNET-AM Pilot

Nikos Kostopoulos, NTUA, WiFiMon Team Member

Pilot Support: Samuel Petrosyan, ASNET-AM

Exploring Virtualization & Monitoring Opportunities in Networking

Workshop, Yerevan, Armenia

October 5th, 2023

FEEL, SEE AND UNDERSTAND YOUR WIFI

TNC19 (Tallinn, Estonia - June 2019)

- Monitored conference Wi-Fi network during TNC19 days
- Based on WiFiMon Hardware Probe (WHP) measurements 5 WHP's
- More than 800 participants

Pilot Outcomes:

- → WiFiMon detects significant throughput drops and delivers useful insight about Wi-Fi performance
- → First WiFiMon crash test was considered successful

Past WiFiMon Pilots (2/2)

GÉANT Symposium 2020 (Ljubljana, Slovenia - February 2020)

- Monitored eduroam during the conference days
- Based on both crowdsourced and probe measurements (7 WHP's)
- Roughly 250 participants

Pilot Outcomes:

- → WiFiMon detects Wi-Fi performance degradation
- → Probe measurements verify the trends of crowdsourced measurements
- → WiFiMon detects drops that are not reported by WLAN NIC measurements

The 3rd WiFiMon conference pilot

- Monitoring eduroam at the Institute for Informatics and Automation Problems (IIAP) - National Academy of Sciences of Armenia
- Monitoring since September 21st
- Monitoring about 50-100 people (researchers, professors, engineers, students)
- Measurements from 1 WHP (Raspberry Pi 4 Model B) placed on the floor
- WAS/WTS installed in a single VM with 4 vCPU's, 8 GB RAM (WiFiMon v. 2.1.0)

Pilot Goal:

- → Experiment with newly introduced WiFiMon features
- → Help ASNET-AM Wi-Fi administrators identify interesting points requiring further inspection

Monitored area blueprints: WHP is placed at the green bullet

Overview of WiFiMon Measurements (1/8)

Overview of WiFiMon Measurements (2/8)

Overview of WiFiMon Measurements (3/8)

Overview of WiFiMon Measurements (4/8)

Overview of WiFiMon Measurements (5/8)

Overview of WiFiMon Measurements (6/8)

Overview of WiFiMon Measurements (7/8)

Overview of WiFiMon Measurements (8/8)

Total number of WiFiMon performance measurements received daily between Sep 23rd and Oct 3rd

- → The WiFiMon Analysis Server (WAS) received 4717 total measurements on 11 days and 429 measurements per day on average
- →Loss of measurements is evident in various days (e.g. maximum loss on Oct 3rd)

WiFiMon Performance Measurements

WiFiMon may report various types of performance measurements (against the WiFiMon Test Server – WTS)

The most important are:

- → Download Throughput
- → Upload Throughput
- → HTTP Ping Round-Trip Time (RTT)
- → Jitter

Average Download Throughput - Per Test-Tool

Average download throughput during the last 10 days:

- → NetTest reports interesting performance drops
- → LibreSpeed Speedtest reports rather stable performance
- Akamai Boomerang detects a very interesting performance drop during the 27th of September; performance suddenly drops and almost stabilizes on a lower value

Average download throughput during the last 10 days:

The results of all testtools are aggregated

- Interesting points (blue circles) can be seen in the diagram
- → Wi-Fi administrators may further inspect what happened at these points

Average Upload Throughput - Aggregated

Average upload throughput during the last 10 days:

The results of all testtools are aggregated

Significant drops (blue circles) are also visible in the chart

Average download throughput

Average upload throughput

Download throughput presumably dropped because of data uploads

Average HTTP Ping RTT - Aggregated

Average HTTP Ping RTT during the last 10 days:

The results of all test-tools are aggregated

Higher RTT's are visible (blue circles) in the chart

Average Jitter during the last 10 days:

A very high jitter measurement (blue circle) is visible on October 2nd

Average link quality during the last 10 days reported from the WLAN NIC of the probe:

- → Link quality (WLAN NIC) does not capture the drops reported by WiFiMon
- → A major drop on October 2nd matches the jitter increase (previous slide)

- → Almost no users during the weekend (blue rectangle)
- → Higher number of users during the conference days (green rectangle)

WiFiMon Performance Measurements

Apart from average measurements, WiFiMon may also report:

- → Median values
- → Maximum values
- → Minimum values
- →95th percentile values

Comparison between the average and the maximum HTTP Ping RTT:

Maximum values of RTT are much higher than the reported average

A Glance in the Future of WiFiMon

Version 2.2.0 (expected November 2023)

WiFiMon Anomaly Detection Feature

Currently (version 2.1.1):

- → WiFiMon administrators are expected to **manually** inspect measurements
- → No mechanisms to automatically detect important throughput deviations

WiFiMon v2.2.0 will introduce mechanisms to analyze throughput time series

- → Anomalies will be detected using the **Hampel** method
- → Hampel method assesses deviations from a median value evaluated on specified measurement windows
- → WiFiMon UI has been enriched to support the new feature
- → Still under improvement

Step 1

The window size specifies how many past measurements to consider

Insert the window size (integer, 1 to 30):

Step 1: Specification of the window size, i.e. how many previous measurements to use for median value calculation

Step 2

The standard deviation parameter specifies how sensitive the analysis will be

Insert standard deviation (float, 1 to 20):

Step 2: What deviation from the median is considered an anomaly?

Step 3 How many days in the past do you want to look at? Insert number of days (integer number): 7

Step 3: How many days to include in the analysis?

Step 4

Which time series do you want to inspect?

Insert "Download-Throughput", "Upload-Throughput", "Local-Ping" or "Jitter-Msec": Upload-Throughput

Step 4: Which time series do we want to inspect?

Step 5

What is the name of the test tool that you want to inspect?

Insert test-tool name (string): speedtest-iiap01

Step 5: Symbolic name of the considered test-tool

Red dots indicate points that should be further inspected

Results for ASNET-AM Pilot (2/2)

Stricter Hampel method parameters (e.g. "10" in step 2) may return less red dots, i.e. anomaly indications that are more serious

Thank You

Homepage: https://wiki.geant.org/display/WIF

WiFiMon mailing list: wifimon-ops@lists.geant.org

www.geant.org

