

Wi-Fi Network Monitoring with GÉANT WiFiMon

Nikos Kostopoulos, NTUA, WiFiMon Team Member Elisantila Gaci, RASH, WiFiMon Service Manager

RoEduNet Conference 2023, Craiova, Romania September 21th, 2023

Introduction

FEEL, SEE AND UNDERSTAND YOUR WIFI

WiFiMon GÉANT Service

- Monitoring Wi-Fi performance as experienced by end users
- Combination of crowdsourced & hardware probe measurements
- IEEE 802.1X networks (eduroam): Data from RADIUS & DHCP logs for richer analysis, e.g. per Access Point (AP)

Contribution:

- Detection of Wi-Fi throughput degradation
- Determination of underperforming areas within a Wi-Fi network
- → Admins may enhance performance, e.g. by installing more APs

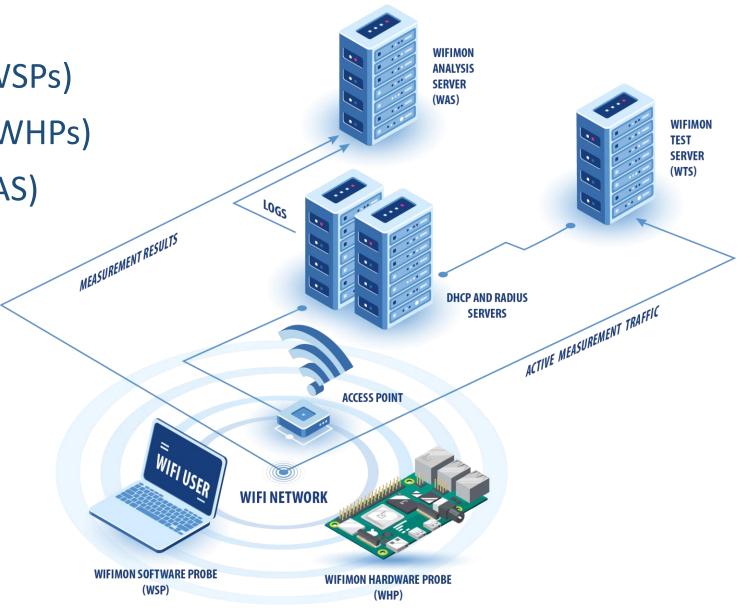
WiFiMon vs Related Monitoring Tools

Monitoring from the end-user perspective (end-user experience)

 No requirements for app installation or end-user intervention

 Centralized view of Wi-Fi performance available to the administrator

Example: WiFiMon vs Ookla Speedtest



	WiFiMon	Ookla Speedtest
Measurements are triggered:	Automatically by visiting a site	By pressing "GO"
Results collected by:	Wi-Fi administrator	End users

WiFiMon Operation

WiFiMon Components:

- WiFiMon Software Probes (WSPs)
- WiFiMon Hardware Probes (WHPs)
- WiFiMon Analysis Server (WAS)
- WiFiMon Test Server (WTS)

Components

WiFiMon Test Server (WTS)

Purpose: Holds code and test data for performance measurements

- Based on JavaScript (JS) technology
- HTML script tags pointing to test tools added to frequently visited sites

2 available test tools:

Akamai Boomerang

LibreSpeed Speedtest

WTS Placement: Close to the monitored networks

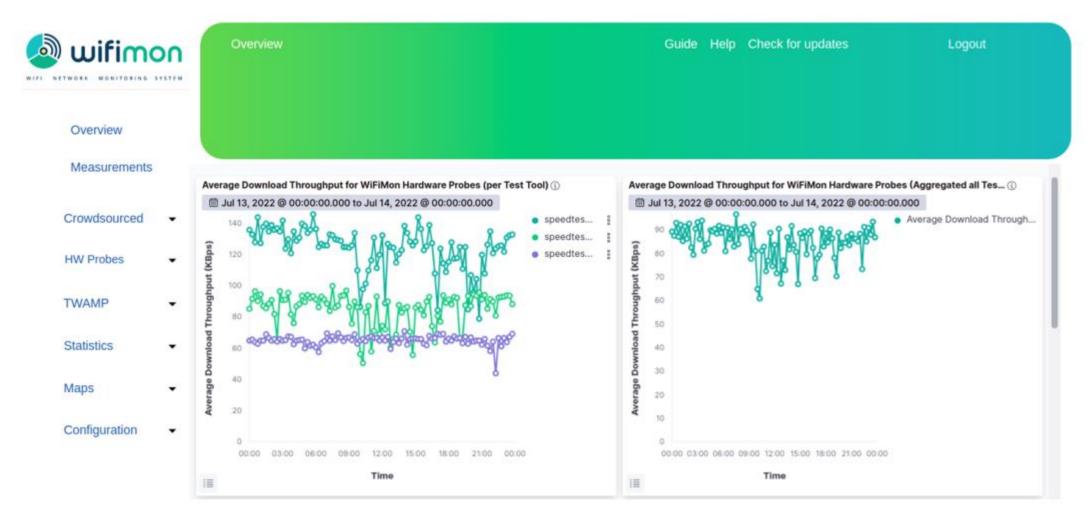
(RTT between end devices and WTS included in results)

→ If impossible: WiFiMon captures relative performance changes

WiFiMon Software Probes (WSPs)

End-user devices

- Crowdsourced measurements triggered against the WTS when users visit a WiFiMon-enabled site
- No requirement for additional software within user devices
- Repetitive measurements regulated via a cookie value


WiFiMon Hardware Probes (WHPs)

- Wi-Fi performance measurements from fixed points within the network
- Baseline throughput that complements crowdsourced measurements
- Performance measurements similar to WSP ones
- Additional data about monitored and nearby ESSIDs
- TWAMP Measurements, System data (CPU, memory, etc)

Triggering measurements based on *crontabs*

Tested for Raspberry Pi v3 and v4

Results per WHP

Aggregated Results

WiFiMon User Interface (2)

Dashboards available for:

- Average values
- Median values
- Maximum values
- Minimum values
- 95th Percentile values

That may be:

- Uncorrelated
- Correlated with the available APs

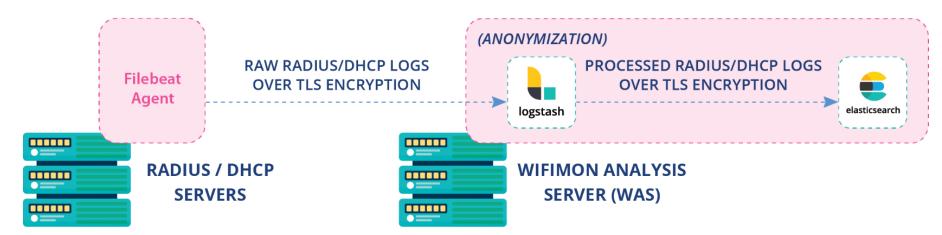
Depicting estimations of:

- Download throughput
- Upload throughput
- HTTP ping Round Trip Time (RTT)

Sources:

- Crowdsourced measurements
- Hardware Probe measurements

Correlation with RADIUS/DHCP Logs


Logs are:

- Extracted from RADIUS/DHCP servers using Filebeat
- Processed and transformed by Logstash in WAS
- Stored in Elasticsearch of WAS

Correlation options:

- With end-user IP address (only RADIUS logs)
- With end-user MAC address (both RADIUS & DHCP logs)

Personally Identifiable Information: IP/MAC addresses secured in transit using TLS-encrypted channels and stored hashed in WAS (X-Pack)

Installation

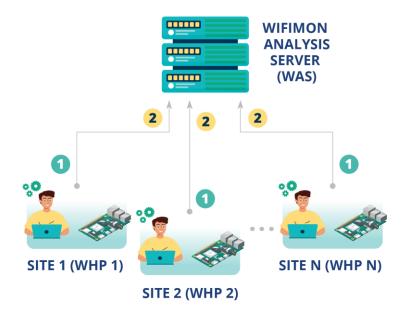
WiFiMon Installation Options

- Institutions install all components on their premises
 - Ansible playbook for WAS/WTS automated installation
 - All data stay within the institution premises

- **NMaas** (simpler option for testing/trying WiFiMon)
 - Another GÉANT Service
 - WiFiMon WAS instance deployed on NMaaS
 - WTS installation still required by institutions (should be close to the monitored network)

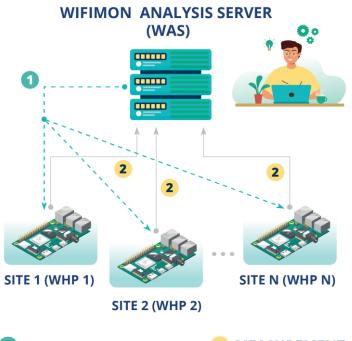
NMaaS Portfolio

Manual WAS installation: Abandoned by WiFiMon



WiFiMon Evolution

Old approach


Administrator feedback demonstrated **limitations**:

- In NAT networks
- In public networks
- Administrators edit config directly

Novel approach required!!!

- → Remote & user-friendly configuration of WHPs from a central point (WAS)
- → Flexibility to control WHPs behind NAT networks

WIFIMON HARDWARE PROBE CONFIGURATION PAGE

Full in the following information to configure the probe

PROBES ARE IDENTIFIED BY AN INTEGER NUMBER

Insert WiFiMon Hardware Probe number:

PROBES TRIGGER
MEASUREMENTS TOWARDS THE
WIFIMon TEST SERVER (WTS)

Insert WTS FQDN or IP address:

Administrators (re)configure WHPs from the WiFiMon UI

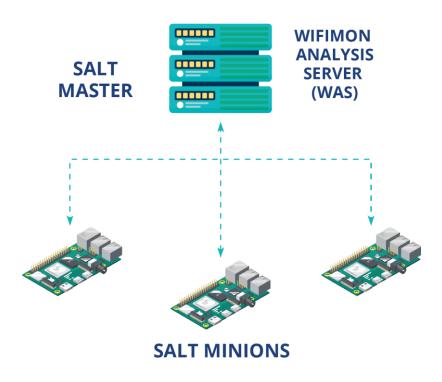
Provided data:

- Device ID
- FQDNs/IP addresses of WiFiMon components
- Location information

Configuration files are generated based on Jinja2 templates

Remote WHP Configuration Made Possible

1


Salt establishes application layer communication:

- WHPs remotely configured from the WAS
- Reconfiguration easier for WHPs behind NAT
- Public IP addresses not required
 - → IP space is conserved
- Salt includes a ZeroMQ message broker:
 Parallel configuration regardless of the WHP number
- Configuration files generated from templates transferred from the WAS to WHPs

Based on Salt

WAS → Salt Master

WHPs→ Salt Minions

Thank You

Homepage: https://wiki.geant.org/display/WIF

WiFiMon mailing list: wifimon-ops@lists.geant.org

www.geant.org

