

WiFiMon: Technical Overview

Nikos Kostopoulos, NTUA/GRNET

Ph.D. Student / WiFiMon Team Member

(nkostopoulos@netmode.ntua.gr)

EaP Workshop: Introduction to WiFiMon for EaP NRENs November 2021, Virtual Event

www.geant.org

WiFiMon: Introduction

- Monitoring Wi-Fi network performance as experienced by end users
- Combination of crowdsourced and hardware probe measurements
- IEEE 802.1X networks (*eduroam*): Data from *RADIUS* and *DHCP* logs strengthen analysis options, e.g. per *Access Point* (*AP*)

Contribution:

- Detection of Wi-Fi throughput degradation
- Determination of underperforming areas within a Wi-Fi network
- → Admins can enhance performance, e.g. by installing more APs

WiFiMon vs other monitoring solutions:

- Monitoring from the end user perspective (end user experience)
- No requirements for end user intervention or installation of apps
- Centralized view of Wi-Fi performance available to the Wi-Fi administrator

Design Features

Combination of crowdsourced and deterministic measurements

Correlation with RADIUS and DHCP logs respecting end user privacy

Independence of Wi-Fi technology and hardware vendor

• Lightweight, active monitoring without impact on end user browsing experience

WiFiMon Operation WiFiMon Administrator 5 Configuration Edits (e.g. Monitored Subnets) Measurements Visualization **Monitored** WiFiMon Test Website Server (WTS) WiFiMon Analysis Performance 4d Server (WAS) Results Performance **Fetch** Tests Trigger HTML Subnet 4b Check **RADIUS DHCP** (2b) Logs Logs Wireless Monitored **Filebeat Filebeat** Network Wi-Fi Network Agent Agent Metrics DHCP **RADIUS** Server Server Data To/From WiFiMon Software WiFiMon Hardware RADIUS/DHCP Server Probes (WSPs) Probes (WHPs) (2a) **WiFiMon Accounting Data Sources** WiFiMon Performance Data Sources

WiFiMon Components:

- WiFiMon Software Probes (WSPs)
- WiFiMon Hardware Probes (WHPs)
- WiFiMon Test Server (WTS)
- WiFiMon Analysis Server (WAS)

WiFiMon Test Server (WTS)

Purpose: Holds code and test data for performance measurements

- Based on *JavaScript* technology
- HTML lines pointing to WTS JavaScript-based test tools
- These lines are embedded to frequently visited sites
- Measurements of the HTTP service (Majority of Internet traffic)

3 available test tools:

- → NetTest (https://code.google.com/archive/p/nettest/)
- → Akamai Boomerang (https://github.com/akamai/boomerang)
- → LibreSpeed Speedtest (https://github.com/librespeed/speedtest)

WTS Placement: Close to the monitored networks for small RTTs between end devices and WTS

→ If not possible: WiFiMon captures relative changes in Wi-Fi performance

WiFiMon Software Probes (WSPs)

- User devices (laptops, smartphones, ...)
- Crowdsourced measurements triggered against the WTS when users visit a WiFiMon-enabled site (not triggered by end users themselves)
- No requirement for additional software within user devices
- Repetitive measurements regulated via a cookie value (WAS/WTS not overloaded)

Example: Lines for Akamai Boomerang test tool

(injected in a sample web site)

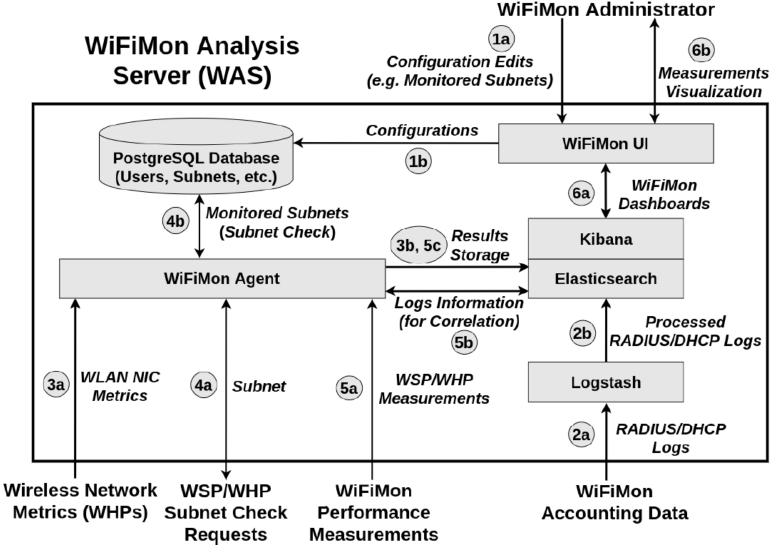
```
<html>
<head>
<title>Boomerang measurement page</title>
        <script type="text/javascript" src="https://fl-5-205.unil.cloud.switch.ch/wifimon/js/boomerang/jquery-3.5.1.min.js"></script>
        <script type="text/javascript" src="https://www.google.com/jsapi"></script>
        <script src="https://fl-5-205.unil.cloud.switch.ch/wifimon/js/boomerang/boomerang.js" type="text/javascript"></script>
        <script src="https://fl-5-205.unil.cloud.switch.ch/wifimon/js/boomerang/bw.js" type="text/javascript"></script>
        <script src="https://fl-5-205.unil.cloud.switch.ch/wifimon/js/boomerang/rt.js" type="text/javascript"></script>
        <script type="text/javascript" id="settings" hostingWebsite="https" agentIp="f1-5-205.unil.cloud.switch.ch" agentPort="8443"</pre>
testtool="boomerang" imagesLocation="https://fl-5-205.unil.cloud.switch.ch/wifimon/images/" cookieTimeInMinutes="0.01"
            src="https://fl-5-205.unil.cloud.switch.ch/wifimon/js/boomerang/boomerang-trigger.js" defer></script>
</head>
<body>
    <h1>Sample https page for WiFiMon measurements using <strong>boomerang</strong></h1>
</body>
</html>
```


WiFiMon Hardware Probes (WHPs)

- Wi-Fi performance measurements from **fixed points** within the network (distance between *WHP*s and *AP*s is relatively constant)
- Baseline throughput that complements crowdsourced measurements
- Performance measurements similar to WSPs (on predefined intervals)
- Additional data about monitored and nearby ESSID's (APs, signal strength, link quality, bit rate, TX power)

Triggering measurements based on *crontabs*:

```
00,10,20,30,40,50 * * * * Xvfb :100 &
02,12,22,32,42,52 * * * * export DISPLAY=:100 && firefox-esr --new-tab URL_TO_nettest.html >/dev/null 2>&1
04,14,24,34,44,54 * * * export DISPLAY=:100 && firefox-esr --new-tab URL_TO_speedworker.html >/dev/null 2>&1
06,16,26,36,46,56 * * * * export DISPLAY=:100 && firefox-esr --new-tab URL_TO_boomerang.html >/dev/null 2>&1
08,18,28,38,48,58 * * * /home/pi/wireless.py >> ~/cron.log 2>&1
```


Tested for Raspberry Pi v3 and v4,

→ Possible for any single-board computer

WiFiMon Analysis Server (WAS)

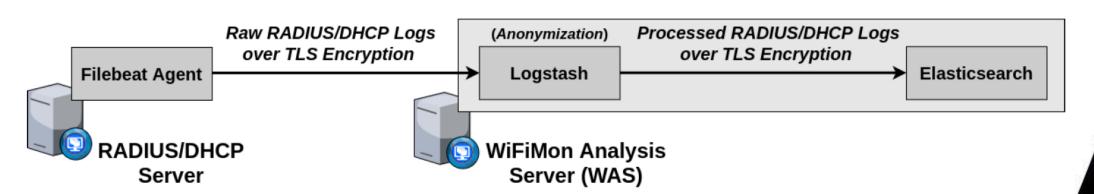
WAS Modules:

- WiFiMon Agent: Collects and processes the received monitoring data
- WiFiMon User Interface (UI): Depicts the results of data processing

WiFiMon User Interface (UI)

Correlation with RADIUS/DHCP Logs

Logs are:


- Extracted from RADIUS/DHCP servers using Filebeat
- Processed and transformed by Logstash in WAS
- Stored in *Elasticsearch* of *WAS*

Correlation options:

- With end user IP address (relying solely on *RADIUS* logs)
- With end user MAC address (using both RADIUS and DHCP logs)

Personally Identifiable Information (PII): IP and MAC addresses are secured in transit using a TLS-encrypted channel and stored hashed in WAS (based on X-Pack)

→ Correlation comparisons are performed on hashed strings.

WiFiMon Installation

GÉANT Service since 2020!

Options:

- Institutions install all components on their premises
 - Ansible playbook for WAS automated installation
 - Manual installation for WTS
 - All data stay within the institution premises
 - Support from WiFiMon team for all components
- NMaaS (more appropriate for testing/trying WiFiMon)
 - WiFiMon WAS instance per institution deployed on NMaaS
 - WTS installation still required by institutions (should be close to the monitored network)
 - Support from WiFiMon team for interfacing WTS and Dockerized WAS on NMaaS

NMaaS Portfolio

Manual WAS installation: Will be soon abandoned by WiFiMon

Recent WiFiMon Additions

Notifications of WiFiMon version updates
 WiFiMon Users are informed of new WiFiMon code versions

Eduroam Log Exporter
 WHP data exported towards the JSON collector of eduroam

• Enriched Kibana dashboards Apart from average values, WiFiMon dashboards include information about max/min/median/95th percentile values

Future Steps

• Enrich WiFiMon toolset with additional Wi-Fi performance monitoring options

- Contacting interested organizations/NRENs for WiFiMon setups
 - Recent setups: NTUA, UoB, SWITCH, GRENA, RASH, UPatras, RENU

• Enrichment of *Kibana* dashboards

Time series analysis and/or machine learning for Wi-Fi outage prediction

• Dissemination of *WiFiMon* in *NREN* and/or peer-reviewed conferences

Check out the WiFiMon video!

https://www.youtube.com/watch?v=9LuGIF6JSnA

... or the WiFiMon Infoshare

https://www.youtube.com/watch?v=VXQV2zWRKgo

... or earlier presentations

https://wiki.geant.org/display/WIF/WiFiMon+Publications

... or the WiFiMon paper at IEEE/IFIP WONS 2021

http://dl.ifip.org/db/conf/wons/wons2021/1570695031.pdf

Thank you

Homepage:

https://wiki.geant.org/display/WIF

WiFiMon Mailing List:

wifimon-ops@lists.geant.org

www.geant.org

© GEANT Association on behalf of the GNA Phase 3 project (GNA-3). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 856726 (GN4-3).