SURF and transport beyond 100G

Rob Smets

Network Technology and Security
Introduction

• Successful transport beyond 100G requires improvement of:
  • Architecture and design of transport layer.
  • DWDM optical line system
  • Transponder capabilities
    • Line side
    • Client side
  • Connector handling
  • Knowledge at engineering level

• A different look at optical resources will help make decisions
  • No longer a day-0 network that can be fully loaded
  • Flexibility more valuable and required to guarantee needed transport forecasts
SN8 vs. SN7 different use of bandwidth

• SN7 was a static network based on static tunnels and limited flexibility on the optical transport layer:
  • Limited multiplexing gain
  • A lot of tickets in case of changes and trouble
  • No IP awareness
  • No restoration / single failure protection
  • Frequent regeneration of 10GbE waves
  • Complex EMS & NMS

• SN8 in combination with an A&O platform proved to be the solution by implementing a dynamic network and improve future utilization of the 100GbE DWDM links.
SURF & > 100G Optical Transport

- Meshed national production network:
  - Comes from a dispersion compensated 10GbE DM/DD technology.
  - Daisy-chained links between sites on branches remain at 100G for some time.
  - Core nodes (Nodal Degree = 2) connect directly to Express nodes (Nodal Degree >2), thus by passing other core nodes remain at 100G.
  - Express links between Express nodes migrate to 200G.
  - Off-load Express nodes directly to Amsterdam (where most traffic terminates).

- Conclusion no immediate need for 400G in national core!
SURF & > 100G Optical Transport

• Different line-system architectures supported by a single vendor is key!
  • Typical ROADM based wavelength routable network
  • DCI type of line system
  • Space Division Multiplexed.

• Collored Optics in Service Platforms
  • SN7 network already gave experience with JDSU tunable XFPs and Menare OTN framing XFPs (ca. +6dB OSNR budget)
  • Skipped CFP2-DCO/ACO because of low port density on routers
  • First candidate: 400GBASE-ZR(+)
  • Only implemented if we can avoid vendor-lock
    • License free
    • Device management interoperability standardised and proven.
SURF & > 100G Optical Transport

- Cross-border fiber Amsterdam - Geneva:
  - Most fiber still on G.655
    - Introduction of Hybrid-Raman amplifiers
    - Mode Field Diameter adaptation between G.655 line and G.652 patch fiber (ca. 0.35dB OSNR gain)
- Transponders on a symbol rate as high as possible
  - Symbol rate scales better than modulation complexity
  - “Blue” waves with a higher modulation complexity for shorter distances
  - “Red” waves with a low modulation complexity for long distance
- At present ca. 1dB OSNR short for 400G on single wavelength (SE=3)
  - At present 2x 200G QPSK wave for one 400GbE client. (SE=2)
  - Ambition: 16x 400GbE service in 100GHz spectrum on Amsterdam Geneva.
SURF & > 100G Optical Transport

• Cross-border fiber: Amsterdam – Hamburg
  • 200G at 16QAM in 50GHz with 3dB margin. (SE=4)

• Cross-border fiber: Amsterdam – London
  • Ended operation in 2021. Now spectrum lease from GEANT (direct route) and NORDUnet (route via Brussels).
  • Current: 2x 100G waves, redundant
  • Future:
    • 2x 400G, 16QAM, 100GHz direct route (SE=4)
    • 8x 100G, QPSK, 50GHz via brussels (SE=2) (present 50GHz line system)
Client Optics (I)

• **100GBASE-LR4**
  • Available in almost all form factors!
  • Used to connect older CFP-DCO based transponders (CFP2) to Juniper MX service platforms (QSFP28).

• **100GBASE-CWDM4**
  • Used to connect more modern CFP2-DCO (both 100G/200G) based transponders (QSFP28) to Juniper MX service platforms (QSFP28)

• **400GBASE-LR4L/FR4+ and 400GBASE-FR4**
  • Used to connect most recent hi-symbol rate transponders to Juniper platforms and directly to customers. (all QSFP-DD)

---

**SURF**
Client Optics (II)

• Avoid as much as possible client optics with e.g. MPO connectors.
  • Keep everything as much as possible on duplex SMF.

• 100GBASE-LR1 candidate successor of 100GBASE-CWDM4

• 400GBASE-ZR candidate successor of 400GBASE-LR in case more distance is needed. (featuring tuneability)

• 800GBASE-XX or ASIC/on-board integrated optics?
Engineering

- DWDM side:
  - Need more expertise from network engineer as there is a non-explicit OTU convergence layer between the OTS and ODU to combine the different DWDM waves into a single resource.

Client optics:

- 100G client optics already showed increased sensitivity to dirt and damage
- 400G client optics shows extreme sensitivity to dirt and damage
  - Inspection is key!
Questions?