

DDoS Detection

How to know if you are attacked or partake in an attack

Klaus Möller WP8-T1

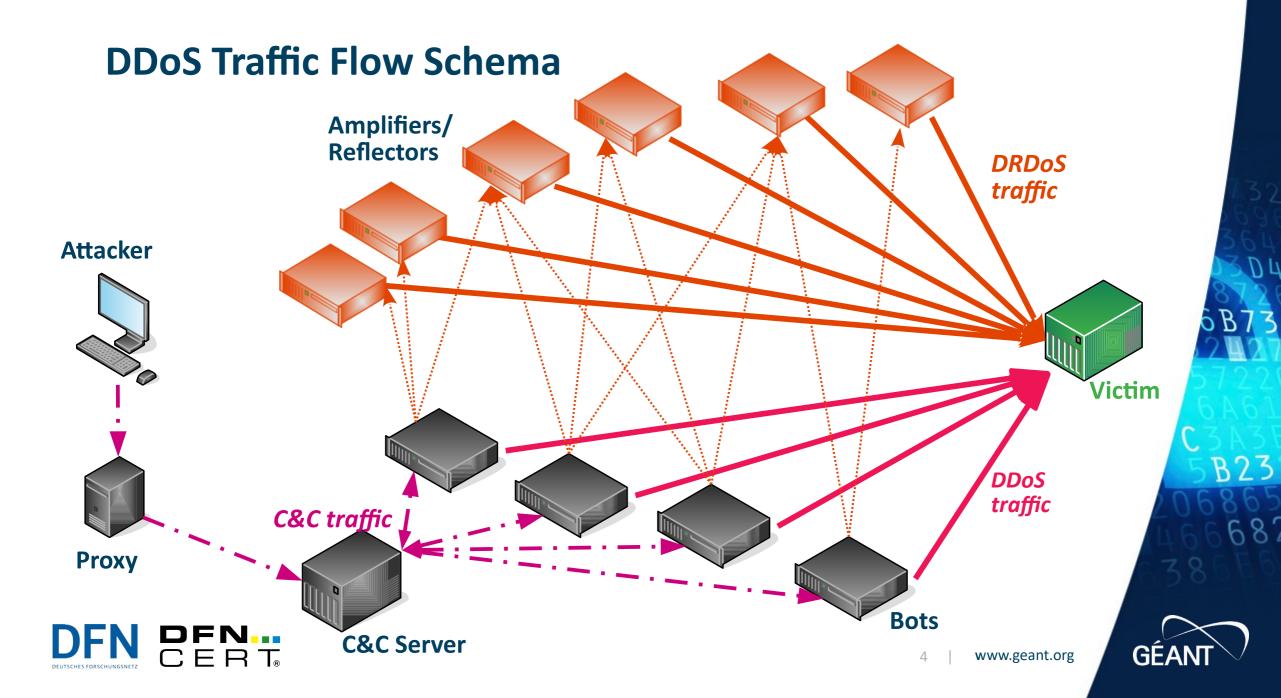
Webinar, 15th of February 2021

Public

www.geant.org

What we will cover today

- Introduction to the detection task
- Sensors used in DDoS detection
 - Short Introduction to NetFlows
 - Example of a detection system: NeMo
- Detection
 - Workflow
 - Structured Traffic Analysis
- Traffic Details
 - Control Server, Bots, D(R)DoS
 - Backscatter



Introduction to Detection

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

Challenges/Obstacles in DDoS Detection

- Sensor needs to be in path of the traffic type to be detected
- Distinguishing malicious traffic (C&C, D(R)Dos) from legitimate
 - Low false positive rate
- Reliable detection
 - Low false negative rate
- Timely
 - No use if too late
- Actionable
 - Results must allow mitigation or other useful action

1

Critical for

acceptance

and usability!

B23

Sensors

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

6 |

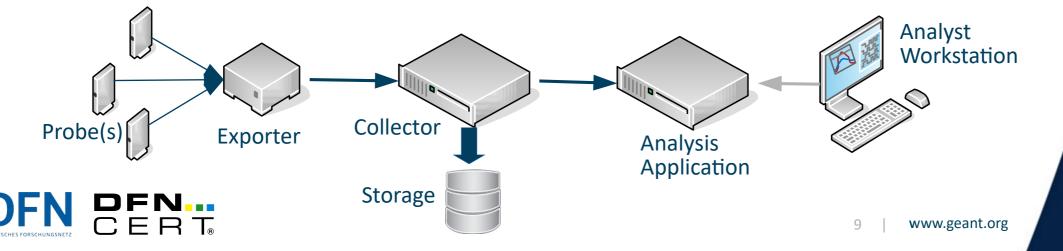
Sensor Placement

- ISP: Ingress/egress points into network
 - At least the most important ones (better all of them)
 - Alternatively: Core links/routers (fewer sensors needed)
- Victim network: Link(s) to ISP(s)
 - Sometimes only link to vital on-premise servers
- Placement dictated by available resources
 - Processing power, bandwidth, memory, or bus-slots in routers/switches
 - Rack space (mitigation needs a lot more)
 - Ultimately a question of available budget

Sensor Types

- Packet sniffers tcpdump, wireshark, etc.
 - 1:1 copy of network packets, huge amounts of data
- Flow data NetFlow, sFlow, Argus, AppFlow, NetStream, etc.
 - Reduced amount of data, but still usable for accounting and security purposes
- Various values read from system or SNMP MIB
 - CPU load, bandwidth used, error rates, queue usage, etc.
- Miscellaneous data
 - Routing tables
 - Customer Relationship Management (CRM): contacts, billing, etc.
 - Cabling, system location, hardware information, etc.

 $D \square$


NetFlow

- Traffic is observed by *probes* at *observation points (IPFIX)*
 - Can be dedicated hardware probes, but often build into routers and switches
- Data from probes is aggregated by the *exporter* that sends flow records to a *collector* that stores the flow records data while the *analysis application* analyzes the traffic in the context of intrusion detection, traffic profiling, etc.
- Protocol for the data exchange between exporter and collector has been standardized as NetFlow (RFC 3954)
 - Later standard that builds on NetFlow: IP Flow Information Export (IPFIX, RFC 7011/12)

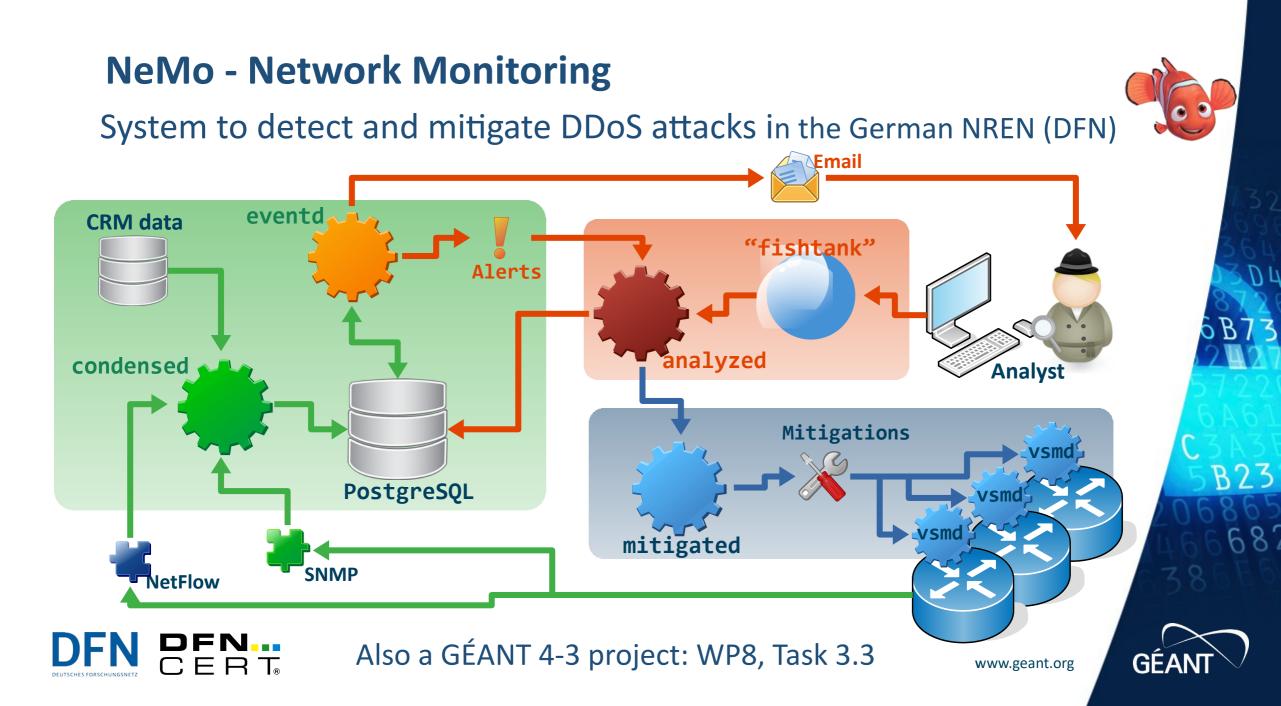
B

B23

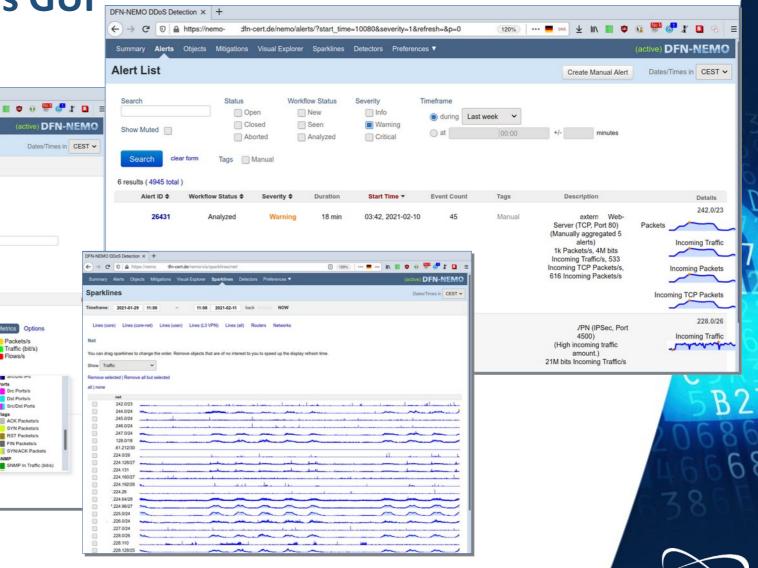
- Storage format is **not** standardized (but conversion-tools exist)

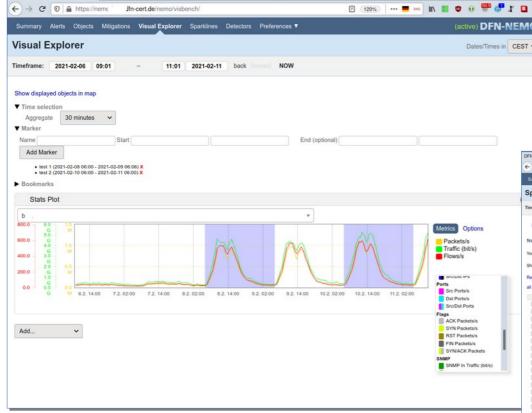
(Net)Flow Records

- Flow: any number of packets observed in a specific time slot and sharing a number of properties
 - Source & destination IP address
 - IP protocol number (e. g. ICMP, TCP, UDP, etc.)
 - TCP/UDP/SCTP source & destination port numbers, or ICMP type & code
 - IP Type of Service (TOS)
 - By definition: Flows are unidirectional
 - Application data (layer 5+) not part of the flow data
- Flow record: the above information plus
 - Number of packets & bytes seen in the timeslot
 - More data: input/output interface, AS number, next hop address and more
 - Depending on the NetFlow protocol version used



Sampled NetFlow


- Evaluating every packet consumes too many resources on high-speed links
 - Sampling reduces number of packets taken into account: 1 out of n
 - n: Sample Rate (typically 100 1.000.000)
 - Result is called *Sampled NetFlow*
 - Still accurate enough for a general traffic picture and DDoS detection
 - More privacy protection friendly (except for n = 1:)
 - Might not detect small, short-lived flows at larger values of n
- Do not confuse with *sFlow* (Sampled Flow, RFC 3176)
 - Samples of counters
 - (Random) samples of packets or *application operations*



NeMo - Alarm Analysis GUI

DFN-NEMO DDoS Detection × +

Detection

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

Detection Workflow – Base lining

- If you don't know what's normally going on in your network
 - How will you ever know when something unusual happens?
 - When things stop working/people complain?
 - It's too late to start base lining then
- Even when outsourcing or automating (AI), an overview is needed
 - How else will you know if you're being ripped of or what the AI is learning?
- Know your network, esp. traffic distribution
 - Most active source and destination IP addresses ("top talkers")
 - Network link utilization
 - Transport & application distribution
 - Traffic changes over time trends, recurrences (work hrs, holidays, ...)

Structured Traffic Analysis 1/4: Statistics

- Protocol hierarchy breakdown
 - IPv4/IPv6, TCP, UDP, HTTP, SSH, DNS, etc.
 - Gives a first idea with what to deal (e. g. ICMP flood, UDP flood) and which service (port number) is being attacked

Protokoll ^	Prozentualer Anteil bei den Paketen	Pakete	Proze	ntualer Anteil der I			
∽- Frame	100.0	3510		63.8			
∽- Ethernet	100.0	3510		9.3			
└── Internet Protocol Version 4	100.0	3510		Ethernet · 4 IPv4	4 . 27	IPv6	TCP
- User Datagram Protocol	100.0	3510			1.51		101
- Internet Security Associati	2.3	81		Address	Port	Packets ^	Byte
Short Frame	2.3	81		85.14.245.77	64738	3.429	4
Data	97.7	3429		.178.82	56063	427	
		,		119.155	61026	400	
				.119.155	54009	358	
				165.85	57092	342	

332

330

54617

53268

240.215

2164 120

UDP · 35

468k

57k

54k

49k

46k

44k

45k

Tx Packets

2.27

15

13

12

11

B23

Structured Traffic Analysis 2/4: Size(s) matter

- Packet size distribution
 - Many small packets \rightarrow possible sign of packet switching attack
 - Many large packets \rightarrow possible sign of bandwidth exhaustion attack —

Topic / Item	Count	Average	Min Val	Max Val	Rate (ms)	Percent	Burst Rate	Burst Start
Packet Lengths	3510	150,49	99	737	0,0000	100%	0,0200	1277,692
0-19	0	-	-	-	0,0000	0,00%	-	-
- 20-39	0	-	-	-	0,0000	0,00%	-	-
- 40-79	0	-	-	-	0,0000	0,00%	-	-
- 80-159	3429	136,64	99	152	0,0000	97,69%	0,0200	1277,692
- 160-319	0	-	-	-	0,0000	0,00%	-	-
- 320-639	0	-	-	-	0,0000	0,00%	-	-
- 640-1279	81	737,00	737	737	0,0000	2,31%	0,0100	223128,846
- 1280-2559	0	-	-	-	0,0000	0,00%	-	-
- 2560-5119	0	-	-	-	0,0000	0,00%	-	-
5120 and greater	0	-	-	-	0,0000	0,00%	-	-

Structured Traffic Analysis 3/4 : Sessions (Flows)

- Look for sessions (flows)
 - Incoming vs. outgoing traffic
 - Top talkers (IP addresses)
- Known Good/Bad IP addresses
 - Partners/Customers
 - WoT, Shadowserver, MISP, etc.

Top-N Auto-	Possible Targets update		Coordinates	Raw Fl	ows Aggregate	.192.97	
Search	h Top- 10	Src IPs	✓ orde	ered by P	Packets ~	Search	Top-
Results for	or: 2021-02-05 14:4	41 - 2021-02-	05 14:46			Results for:	2021-
Packets	Estimated Rate	% of Total	Src IPs			Packets	Estin
85000	236.11	5.11	.17.	21		1662000	
85000 68500		5.11 4.12	.17.				
	190.28			3			
68500	190.28 147.22	4.12	.15.	3 18			
68500 53000	190.28 147.22 144.44	4.12 3.19	.15.	3 18 19			
68500 53000 52000	190.28 147.22 144.44 144.44	4.12 3.19 3.13	.15. 15. .15.	3 18 19 44			
68500 53000 52000 52000	190.28 147.22 144.44 144.44 131.94	4.12 3.19 3.13 3.13	.15. 15. 15. 208.	3 18 19 44 4			
68500 53000 52000 52000 47500	190.28 147.22 144.44 144.44 131.94 122.22	4.12 3.19 3.13 3.13 2.86	.15. 15. 15. 208. .15.	3 18 19 44 4 11			
68500 53000 52000 52000 47500 44000	190.28 147.22 144.44 144.44 131.94 122.22 111.11	4.12 3.19 3.13 3.13 2.86 2.65	15. 15. 15. 208. .15. .17.	3 18 19 44 4 11 78			

Structured Traffic Analysis 4/4 : Full packet captures

- Sometimes needed
 - Easy to get with sFlow
 - Or via port mirroring of switches or dedicated probes at critical points
 - But need to set up sensors in advance
- Gives insight into
 - Application type of attacks
- Check samples against NIDS to look for exploits of vulnerabilities
 - Zeek (Bro), Suricata, Snort, Yara, etc.
- Don't forget decryption for TLS or VPNs

• Check with your DPO (esp. with little/shaky evidence) **DFN** $\Box \in \Box = \Box$ 19

Traffic Characteristics

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

20 |

DDoS Traffic Characteristics: C&C Server

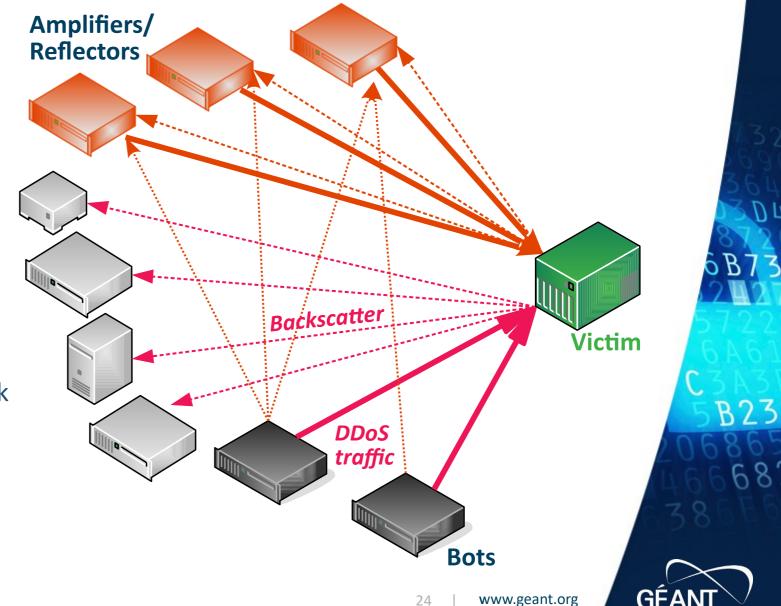
- From Attacker (via Proxy) to C&C Server
 - Traffic type may vary: HTTPS, VPN, or other
- From Bots to C&C server (cmd pull) or
 - Short lived connections (usually just one HTTP GET request)
 - Small amount of data transferred (bot cmd, bot config, sometimes code updates)
 - Server IP address may co-host legitimate websites
- From C&C server to Bots (cmd push)
 - Will need open port on the Bot
 - Traffic may be piggybacked on top of other traffic (HTTP, DNS, etc.)
 - Or reverse connection
 - Usually long-lived
- Bottom line: too hard, don't bother, unless you have a lead to follow

DDoS Traffic Characteristics: Bots vs. Clients

- Bots to Victim traffic
 - Source IP address: Spoofed (random)
 - When source addresses are filtered: subnet of the bot or the bot itself
 - Lots of "empty" sessions:
 - Low number of packets,
 - Very little data transferred, small packets (unless flooding)
- Normal (high usage) traffic
 - Lower number of source IP-addresses
 - Often known, like backup servers, customers, partners, etc.
 - Sessions do actually transfer data more symmetric traffic distribution
 - Is there a reason?
 - Backup time, "slashdotted/heise effect", launch of service, ...?

DDoS Traffic Characteristics: DRDoS Traffic

- Protocols:
 - Usually ICMP or UDP easy spoofing
 - Rarely TCP needs application that can be triggered
- From Amplifiers/Reflectors to victim
 - Source address of amplifier is not spoofed
 - Often that of known open amplifiers (\rightarrow Shadowserver)
- From Bots to Amplifiers/Reflector
 - Bandwidth used usually not suspicious
 - Small packets
 - Bot distributes traffic across many amplifiers/reflectors
 - Unless sensor is placed in front of the reflector


DDoS Backscatter

- DDoS traffic may elicit • responses from victim
 - I.e. TCP SYN-ACK packets in response to TCP SYN (floods) —
 - Or ICMP unreachable, or
 - Application responses, ...
- To random IP addresses if bots spoof the source IP address

DFN. CERT

- If not spoofed, directly back to the bots IP address
- Responses to DRDoS traffic will go to back amplifiers/reflectors

C&C Server

DDoS Backscatter Detection - Network Telescope

- Technology used is the same as for other DDoS traffic
 - Sensors, collectors, analysers, etc.
- To distinguish from other traffic, look only for incoming traffic to unused (dark) IP addresses
 - "Darknet", if interspersed with live addresses → "Greynet"
 - Other names: "network motion sensors", "network sink", "blackhole monitor"
 - Best if IP address space was never used in production (very rare today)
 - Doesn't need to be continuous
 - Amount of DDoS traffic seen by sensors would be proportional to the number of IP addresses covered by sensors
 - Assuming perfectly random distribution with spoofed IP addresses

DDoS Backscatter Detection - Traffic Patterns

- Source IP address is that of the victim
- Random destination IP addresses, no coherence
- Source port that of the attacked service
 - Usually port 80/tcp or 443/tcp
- Destination ports random, usually ephemeral ports (> 1023)
 - May see some "ladder" if DDoS tool uses changing port numbers
- Layer 5+ contents depend on type of DDoS
 - Will not be present in flow data full packet captures needed
- Traffic may be from multiple DDoS techniques as attackers employ them at once against a target

Detection Systems

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

What have you learned?

- Analysis looks easy
 - Have some nice tools
 - Structured approach
 - I can do that:)
- Not to stall optimism, BUT
 - Examples shown are labs/low usage networks
 - Analysis on busy production networks is much harder
 - Most of today's DDoS attacks are using more than one vector
 - Attackers adapt to countermeasures \rightarrow i.e. change tactics & techniques
- Practice, practice, practice, ...
- And then you need to mitigate the attack \rightarrow next session

Thank you

Any questions?

Next course: **DDoS Mitigation** 17th of February 2021 www.geant.org

© GÉANT Association on behalf of the GN4 Phase 2 project (GN4-2). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 731122 (GN4-2).

References:

- M. Collins: "Network Security Through Data Analysis Building Situational Awareness", O'Reilly, February 2014: ISBN:978-1-449-35790-0
- M. Collins: *"Network Security Through Data Analysis From Data to Action"*, 2nd Ed., O'Reilly, October 2017, ISBN: 978-1491962848
- R. Bejtlich: *"Tao of Network Security Monitoring, The: Beyond Intrusion Detection"*, Addison Wesley, July 2004, ISBN-13: 978-0321246776
- R. Bejtlich: "The Practice of Network Security Monitoring: Understanding Incident Detection and Response", NoStarch Press, July 2013, ISBN-13: 978-1593275099
- M. W. Lucas: "Network Flow Analysis", NoStarch Press, 2010, ISBN-13: 978-1-59327-203-6
- Joseph O'Hara: "Cloud-based network telescope for Internet background radiation collection", University of Dublin, Trinity College, April 2019, https://scss.tcd.ie/publications/theses/diss/2019/TCD-SCSS-DISSERTATION-2019-020.pdf
- Shadowserver Foundation: https://www.shadowserver.org/

NetFlow Tools

- Pmacct: https://github.com/pmacct/pmacct/
- *NFStream*: https://www.nfstream.org/
- *argus:* https://www.qosient.com/argus/downloads.shtml
- *Softflowd:* https://github.com/irino/softflowd
- SLiK Suite:
 - FlowViewer GUI for SILK tools:
- *Nfdump:* https://github.com/phaag/nfdump
- *Nfsen-ng:* https://github.com/mbolli/nfsen-ng
- *GoFlow:* https://github.com/cloudflare/goflow
 - https://github.com/cloudflare/flow-pipeline
- Dynamite NSM: https://dynamite.ai/dynamitensm/
 - https://github.com/DynamiteAI/dynamite-nsm
- Security Onion: https://securityonionsolutions.com/

RFCs

- P. Phaal, RFC 3176: "InMon Corporation's sFlow: A Method for Monitoring Traffic in Switched and Routed Networks ", September 2001, https://tools.ietf.org/html/rfc3176
- B. Claise, Ed., RFC 3954: "Cisco Systems NetFlow Services Export Version 9", October 2004, https://tools.ietf.org/html/rfc3954
- B. Claise, Ed., RFC 7011: "Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow Information", September 2013, https://tools.ietf.org/html/rfc7011
- B. Claise, Ed., RFC 7012: "Information Model for IP Flow Information Export (IPFIX)", September 2013, https://tools.ietf.org/html/rfc7012

