

High Speed Testing

Doug Southworth • Indiana University • <u>dojosout@iu.edu</u>

©2022 The perfSONAR Project and its Contributors • https://www.perfsonar.net

Hardware Considerations

CPU

- Clock rate is king!
 - Bits have to make it from the NIC to RAM (and vice-versa), and the path between them is the CPU
 - Each TCP stream is single threaded, so multi-core alone won't help
 - Multiple high-speed cores are necessary for multi-thread transfers
- What to look for
 - Clock speed of at least 3.0 GHz per core for 40G testing, more for 100G
 - Enough cores to handle the anticipated number of simultaneous streams
 - Need physical cores, not hyperthreaded

RAM

- Massive amounts of RAM aren't necessary, but configuration counts
 - The goal is to maximize bandwidth between the CPU and RAM
 - This is usually achieved by occupying all RAM slots with identically sized modules
 - In practice this means using a greater quantity of smaller sized modules
- What to look for
 - Highest clock rate RAM your platform supports
 - Likely the smallest RAM modules you can find
 - This may result in more RAM than the system technically needs, but the goal is bandwidth, not strictly capacity

Since the ESnet G

Storage

- Nothing on the market will cope with 100Gbps by itself
 - 100Gbps = 12,500MBps
 - SSD does about 600MBps on average
 - RAID arrays can help, but only so much
- Large distributed file systems could be the answer, but
 - What are you testing? Disk or Network?
 - Don't allow scope creed to dominate your purchase decision

• OS Considerations

Tuning is necessary

- Default OS network tunings aren't adequate
 - Can cope with 10G, but not 40/100G
 - Changing MTU, window size/TCP buffer, and even ring buffer are necessary
 - Packet pacing
- What to expect
 - MTU is pretty simple 1500 is the default, 9000 is the goal, but for best performance the entire path needs to be 9000
 - 9000B packets can be fragmented down to 1500B, but at the cost of performance
 - Ring buffer tuning is a bit of an art. Trial and error will likely factor in.

🕥 ESnet _{Gf}

Example: Arecibo data rescue

- Commodity hardware (Synology NAS) used to rescue and transfer irreplicable data
 - Tuned for 1G from the factory
 - 10G card was added, but initial results weren't promising (~800Mbps)
- Tuning was a big help
 - Ring buffers modified
 - TCP window modified
 - End result was ~4Gbps average, and the limiting factor was bus/CPU speed

Since the ESSNET Grade Street Grade Street S

• Network Architecture

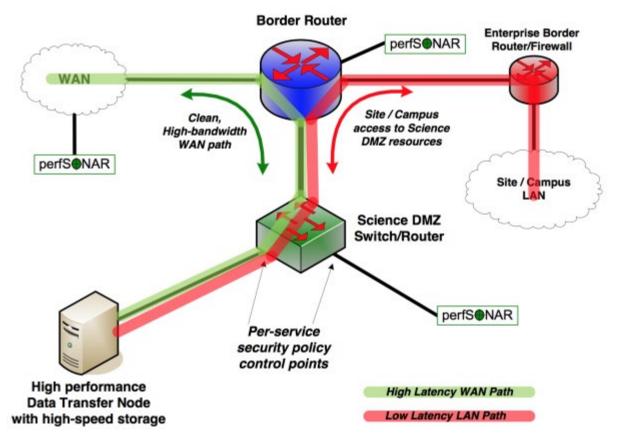
Switches

- Shallow buffers are everywhere
 - Shallow is a relative term when you approach 100G speeds
 - BDP of a 100G transfer over 50ms latency is 600MB!
- While deep buffered switches are necessary for high speed transfers, they can be detrimental to enterprise traffic

Snet Gí

- Understanding the use case is critical
- Networks are not one-size-fits-all

Firewalls and UTMs


- Often hamper performance
 - Not enough processor to maintain line speed on high speed transfers
 - Designed for "herds of mice", not "column of elephants"
- Security must be carefully planned
 - Installing a device doesn't mean your network is secure
 - Not having one in your network doesn't mean it's vulnerable

perfS NAR

Science DMZ

- Enterprise networks aren't designed for large file transfers over long distances
 - Firewalls are rarely performant
 - Shallow buffer switches are prevalent
 - Packet loss is generally acceptable
- The Science DMZ is specifically designed to address these concerns while maintaining security

ESnet

• Some things to think about

Useful metrics

- Packet loss
 - The goal is as close to zero as possible
 - Bandwidth only tells part of the story
- Latency and routing
 - Is there a more direct path?
 - Can latency be lowered?
 - Is a higher latency path "cleaner?"
 - Have there been changes recently?

How the network is used

- 100G single stream doesn't happen in the wild, so testing that way has limited usefulness
 - 10G multi-stream will generally yield more realistic results
 - In many cases, the goal is to model end-user performance expectations
- Participation in a mesh is useful
 - ...but only if it's monitored!
 - Set realistic thresholds and alarms

Human networking

- Routing Working Group
 - As the name would imply, route efficiency focused
 - Large overlap with high performance use cases
- Conferences
 - Hallway conversations are always valuable
 - More problems get solved over dinner than email
- Partners

16

• Who are you (or your researchers) doing a lot of transfers with?

Data Mobility Exhibition

- Models real world achievable performance
 - Well tuned resources
 - Not perfSONAR centric per se, but participants are very active in the measurement and monitoring community
- https://fasterdata.es.net/science-dmz/learn-more/2019-2020-datamobility-workshop-and-exhibition/

Question and answer icon by iconosphere from The Noun Project

Questions and Answers

Snet GÉANT

©2022 The perfSONAR Project and its Contributors • https://www.perfsonar.net

18

High Speed Testing

Doug Southworth • Indiana University • <u>dojosout@iu.edu</u>

©2022 The perfSONAR Project and its Contributors • https://www.perfsonar.net