

Gen 2 OpenStack cloud architecture

Agenda

- What and why Gen 2 (G2) OpenStack?
- G2 Cloud orchestration
- G2 architecture overview
- G1 to G2 OpenStack migration plans

Compute services at e-INFRA CZ

- Batch compute based on PBS (known as Metacentrum)
- OpenStack laaS cloud
- SensitiveCloud PaaS based on K8S
- Managed Kubernetes PaaS based on K8S
- Karolina supercomputer

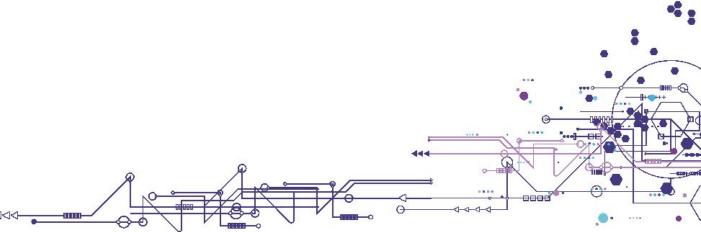
Cloud services as tool to support research

Motivation for G2 architecture?

- End of life of GEN1 installation from 2016
- Reach much lower operation cost, target is 20%, currently around 70%
- Enable frequent OpenStack updates
- Enable Cloud as a service (to support specialized cloud deployments)
- Improve cloud resiliency
- Tune current OpenStack cloud decisions
 - assignment public networks to projects
 - quota assignments, projects governance
 - improve flavor naming and unify functionality from UI and commandline
 - Improve various parameters of cloud (MTUs, storages, GUI, ...)

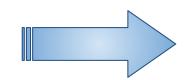
Who will use it

- e-INFRA CZ is research e-infrastructure
 - 200 research/experiment oriented projects
 - 600 users projects in "free tier" (treated as playground)
 - 40+ international projects (through EGI and ELIXIR)
- Main focus on being HPC cloud
 - large flavors, GPUs, fast storage and networking
- Small portion of resources/support dedicated to standard operation but not HA
 - Small VMs, databases, no advanced features like LBaaS, ...



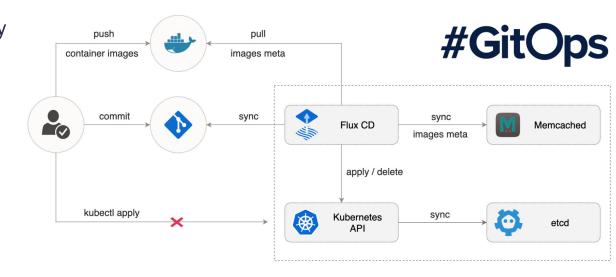
Cloud orchestration

Infrastructure technologies



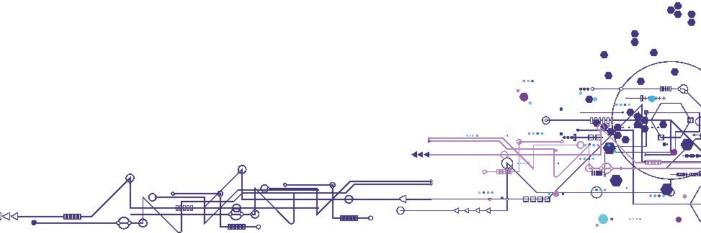
G1/G2 OpenStack infrastructure technologies

- G1 Problems:
 - Upstream kolla-ansible split into two parts one in Puppet and the other in Ansible, expensive to track community
 - OpenStack entity life-cycle enforcement extra code in Ansible
- **G2** Challenges:
 - Stay compatible and in touch with the upstream repositories
 - Manage multiple clouds sustainable GitOps way

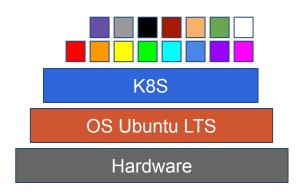


G2 OpenStack deployment overview

- Infrastructure is declaratively described in git repository which contains set of component releases and configurations
 - Differentiation on helm chart values
- Repository is continuously watched by Flux CD and deployed (server-side) to Kubernetes
 - application life-cycle is guaranteed

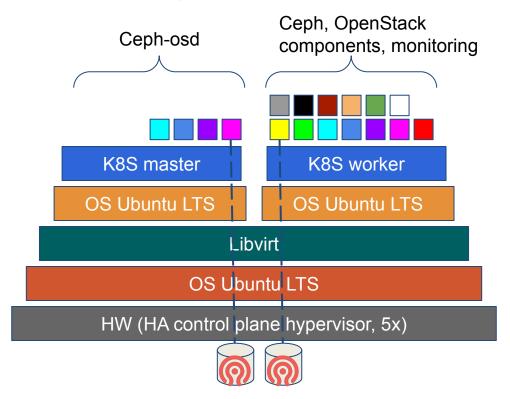


Cloud Architecture


From HW to OpenStack services

G2 OpenStack architecture overview I

- G2 Cloud comes with HA control plane, ceph nodes and compute nodes
 - Ceph nodes provide internal ceph network storage (k8s PV, ...)
 - HA Control plane runs both kubernetes and openstack components
 - Compute nodes run openstack compute containers on K8S worker
- All OpenStack components are built as container images and HELM charts



G2 OpenStack architecture overview II

G2 Cloud "compact" architecture scheme

OpenStack compute, monitoring, log shipping, ...

K8S worker

OS Ubuntu LTS

HW (a compute hypervisor)

G2 OStack Operating System

- Ubuntu LTS 22.04 as primary operating system
 - Long release support
 - Better tested in Ostack / Kubernetes communities

G2 OStack - Bottom HW, provisioning, initialization I

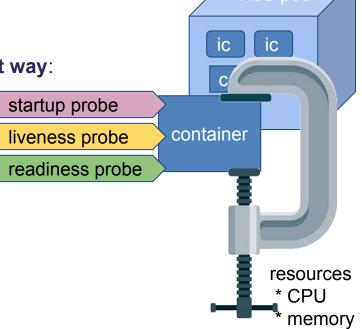
- MAAS Debian/Ubuntu initial provisioning
 - Initial network configuration
 - Deployment customization using cloud-init
 - Why Canonical MASS?
 - More standard approach than custom scripts

G2 OStack - Bottom HW, provisioning, initialization II

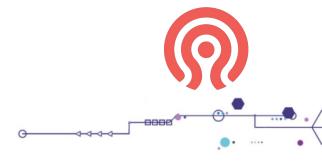
- Infra-config Ansible based Debian/Ubuntu provisioning before kubernetes
 - Internal lightweight in-house ansible IaC repository
 - Cleanup after MAAS deployment
 - Basic operating system configuration
 - Ssh keys, networking, packages ...
 - Preparation for libvirt VMs, kubespray
 - Storage of node configuration
 - Puppet replacement
 - Firewall rules, VM automated provisioning, etc.

G2 OStack - Kubernetes + HELM + Flux CD

- We use kubespray (Ansible) to deploy vanilla kubernetes on cloud Ubuntu LTS nodes
 - We stick to kubernetes 1.24.x release
- We currently use kube-vip addon for kubernetes API & inbound traffic HA
- Kubernetes use internal ceph storage as network persistent storage
- Deployment OpenStack and applications is done via:
 - HELM
 - Application packager
 - Flux CD v2
 - Continuous Delivery from gitops git repository



G2 OStack - Why Kubernetes under OpenStack?


- OpenStack components are in containers already today (OpenStack-Kolla)
- K8S provides additional resiliency.
- K8S manages container applications state-of-the-art way:
 - K8S container resources
 - K8S container probes

G2 OStack - Storage improvements

- Internal ceph for platform itself (Glance pool?)
- External "fast" ceph SSD NVMe pool
- External "slow" ceph, performance will be improved by ceph extension + ceph version upgrade (Nautilus -> Octopus)
- Planned: 100Gbps networking & Flash SSD pool

G1 to **G2** migration plans

- Migration G1 -> G2
 - Migration guide will be published, will consist of steps coordinated with HW movement from G1 -> G2
 - Cloud team will be assisting with the migration

Takeaways

- G2 OpenStack cloud uses fresh technologies, shift towards Ubuntu LTS
- G2 OpenStack cloud architecture is build on top of Kubernetes
- We maximize using open-source project (95%) and create minimum code ourselves (5%)
 - We plan to maintain OpenStack much closer to the open-source upstream than before
- We learn from difficulties / misconfigurations we ended up with G1 OpenStack cloud

Thank you for your attention! Questions?

