
	

30-04-2016	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT	

SA8T2	Internal	Deliverable	

Contractual	Date:	 30-04-2016	
Actual	Date:	 30-04-2016	
Grant	Agreement	No.:	 691567	
Activity:	 12/SA8	
Task	Item:	 Task	2	–	WebRTC	
Nature	of	Deliverable:	 R	(Report	
Dissemination	Level:	 PU	(Public)	
Lead	Partner:	 NORDUnet	(UNINETT)	
Authors:	 Mihály	Mészáros	(NIIFI)	

	
©	GEANT	Limited	on	behalf	of	the	GN4	Phase	1	project.	
The	research	leading	to	these	results	has	received	funding	from	the	European	Union’s	Horizon	2020	research	and	
innovation	programme	under	Grant	Agreement	No.	691567	(GN4-1).	

Abstract	
This	document	reports	on	results	and	findings	from	a	technical	investigation	into	the	use	of	the	IETF	ICE,	STUN	and	TURN	
protocols	 for	 NAT	 and	 firewall	 traversal	 with	WebRTC,	 in	 the	 context	 of	 European	 higher	 education	 and	 research.	 The	
technology	scout	was	conducted	by	the	Service	Activity	8	 (SA8,	Real	Time	Communication	and	Media),	Task	2	(WebRTC)	
team	as	part	of	the	GN4-1	project.	This	report	should,	as	such,	be	read	in	context	of	the	related	work	produced	by	GN4-1	
SA8-T2.

	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT	

i	

Table	of	Contents	

1	 Introduction	 3	
1.1	 About	this	document	 3	

1.1.1	 Target	audience	 3	
1.1.2	 Responsible	task	members	 3	

1.2	 Background	 3	
1.3	 Rationale	 4	
1.4	 Tech	scout	objective	and	methodology	 4	

2	 Technology	and	deployments	 5	
2.1	 ICE,	STUN	and	TURN	protocol	history	 5	
2.2	 ICE	and	WebRTC	 6	
2.3	 Market	exploration	 6	

3	 PoC	distributed	STUN/TURN	service	 8	
3.1	 PoC	overall	setup	goals	 8	
3.2	 Credential	mechanisms	 8	

3.2.1	 Long	 Term	 Credential	Mechanism	 (username,	 password,	 realm	
based)	 8	
3.2.2	 Time	Limited	Long	Term	Credential	Mechanism	(REST	API)	 8	
3.2.3	 OAuth	 9	

3.3	 Ansible	for	automated	node	deployment	 10	
3.4	 PoC	Overview	 10	
3.5	 Setup	of	the	PoC	hosts	 11	

3.5.1	 VM	images	 12	
3.5.2	 Installation	and	configuration	of	the	PoC	Hosts	 12	

3.6	 Database	Schemas	and	extensions	 14	
3.6.1	 Database	schema	for	Long	Term	Credential	 14	
3.6.2	 Database	schema	for	REST	support	 15	

3.7	 PoC	Web	Interface	and	Authentication	schemas	 17	
3.8	 REST	API	 17	
3.9	 Geolocation	for	load-sharing	and	load-balancing	 17	

3.9.1	 Geolocation	for	Long	Term	Credential	(LTC)	 17	

	Contents	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

ii	

3.9.2	 Geolocation	for	the	Time	Limited	Long	Term	Credential	(REST)	 18	

4	 Lessons	learned	 19	
4.1	 Technology	strength	 19	
4.2	 Technology	shortcomings	 19	
4.3	 STUN/TURN	service	meets	R&E	community	needs	 20	

5	 Conclusion	 22	

	

Table	of	Figures		 	

Figure	1:	STUN/TURN	service	overview	 11	
Figure	2:	Table	`turnusers_lt`	 15	
Figure	3:	Database	structure	and	relations	 16	

		

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT	

3	

1 Introduction	

1.1 About	this	document	

This	 report	 covers	 the	 results	 of	 a	 technical	 investigation	 into	 the	 use	 of	 the	 IETF	 ICE,	 STUN	 and	
TURN	 protocols	 for	 NAT	 and	 firewall	 traversal	 with	 WebRTC,	 in	 the	 context	 of	 European	 higher	
education	and	research.	The	first	part	of	the	document	provides	a	technical	overview	of	 ICE,	STUN	
and	TURN	in	WebRTC.		The	second	part	presents	a	proof	of	concept	implementation	of	a	distributed	
ICE,	STUN	and	TURN	infrastructure	for	European	higher	education	and	research.	

The	technology	scout	was	undertaken	by	the	Service	Activity	8	(SA8,	Real	Time	Communication	and	
Media),	Task	2	(WebRTC)	team	as	part	of	the	GN4-1	project.	This	report	should,	as	such,	be	read	in	
context	of	the	related	work	produced	by	GN4-1	SA8-T2.	

The	WebRTC	task	ran	from	1	May	2015	to	30	April	2016.	

1.1.1 Target	audience	

This	 document	 targets	 technical	 management	 and	 specialists,	 in	 particular	 those	 working	 in	 the	
fields	of	real	time	communications,	eLearning	and	eResearch.	

1.1.2 Responsible	task	members	

Mihály	Mészáros	 (NIIF)	 had	 the	 lead	 on	 this	 tech	 scout.	 Jan	Meijer	 (UNINETT)	 and	 Simon	 Skrødal	
(UNINETT)	were	the	document	editors.	

1.2 Background	

ICE	 (Interactive	 Connectivity	 Establishment)	 is	 a	 protocol	 for	 Network	 Address	 Translator	 (NAT)	
traversal	 for	UDP-based	multimedia	 sessions.	 	 It	 allows	 audio	 and	 video	 streams	 to	 flow	between	
communication	end	points	despite	hindrances	like	NATs	and	firewalls.		ICE	makes	use	of	the	Session	
Traversal	Utilities	for	NAT	(STUN)	protocol	and	its	extension,	Traversal	Using	Relay	NAT	(TURN).		ICE	
can	be	used	by	any	protocol	utilizing	the	offer/answer	model	such	as	WebRTC.	

The	ICE,	STUN	and	TURN	protocols	are	defined	by	the	IETF.	 	They	are	mandatory	to	implement	for	
WebRTC-compliant	endpoints.	From	statistics	gathered	by	WebRTC	statistics	cloud	service	provider	

Introduction	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

4	

callstats.io	 we	 know	 that	 without	 these	 protocols	 more	 than	 10%	 of	 WebRTC	 talks	 would	 fail	
because	an	audio	and/or	video	stream	could	not	be	set	up.		For	the	end	user	this	typically	manifests	
itself	 by	 being	 unable	 to	 hear/see	 other	 participants,	 or	 be	 seen/heard	 by	 the	 other	 participants,	
which	 leads	 to	 "It	 doesn't	 work"	 frustration.	 	 ICE,	 STUN	 and	 TURN	 prevent	 this	 unfortunate	 user	
experience	from	happening.	

1.3 Rationale		

Most	R&E	users	encounter	firewalls	and	NATs	on	campus,	at	home	and	on	the	road.	These	middle-
boxes	cause	problems	for	real	time	communication	data	streams	(audio,	video,	data).	The	ICE,	STUN	
and	TURN	protocols	are	the	widely	accepted	open	standards	to	address	and	solve	complex	problems	
with	 NAT/firewall	 traversal	 and	 IPv6	 transitioning	 and	 are	 mandatory	 to	 implement	 in	 WebRTC-
compliant	end	points.			

Any	WebRTC	 deployment	 in	 R&E	will	 therefore	 need	 to	 address	 how	 it	 deals	with	 ICE,	 STUN	 and	
TURN.	This	technology	scout	provides	the	technology	background	for	a	recommendation	on	an	ICE,	
STUN	and	TURN	infrastructure	recommendation	for	the	European	R&E	community.	

1.4 Tech	scout	objective	and	methodology	

The	 technology	 scout	 started	with	desk	 research	 into	 STUN/TURN	 technology	 standards,	 available	
products	and	 services	and	how	 this	 relates	 to	WebRTC.	 	After	 this	phase	 it	was	 clear	 that	 anyone	
who	would	want	to	deploy	WebRTC	services	or	applications	(especially	peer	to	peer	based)	or	who'd	
be	deploying	gateway	boxes	would	quickly	have	a	need	 for	 a	 STUN/TURN	service.	 	 Such	a	 service	
would	have	to	be	procured	or	built.	

To	 facilitate	 both	 processes	 a	 proof	 of	 concept	 STUN/TURN	 service	 supporting	 both	 WebRTC	
applications	and	legacy	SIP	devices	was	built.		The	goal	with	the	PoC	was	threefold:	

• explore	the	use	of	federated	authentication	to	allow	WebRTC	applications	to	authenticate	to	
a	STUN/TURN	service	

• explore	the	feasibility	of	building	a	distributed	STUN/TURN	service	in	the	GÉANT	community	
• gain	 practical	 experience	with	 STUN/TURN	 server	 technology	 for	 use	 in	 the	 requirements	

specification	process	of	a	possible	procurement	
	
For	 the	 proof	 of	 concept,	 the	most	 popular	 and	mature	 open	 source	 software	 product	was	 used:	
CoTURN.		Amongst	others	Google	uses	CoTURN.	

		

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT	

5	

2 Technology	and	deployments	

2.1 ICE,	STUN	and	TURN	protocol	history	

ICE,	 STUN	 and	 TURN	 are	 IETF	 protocols	 used	 to	 ensure	 multimedia	 applications	 can	 deal	 with	
"middle	boxes"	like	NATs	and	firewalls.	 	ICE	(Interactive	Connectivity	Establishment)	is	the	protocol	
for	Network	Address	Translator	(NAT)	traversal	for	UDP-based	multimedia	sessions.		ICE	makes	use	
of	 the	STUN	(Session	Traversal	Utilities	 for	NAT)	protocol	and	 its	extension,	TURN	(Traversal	Using	
Relay	NAT).		ICE	can	be	used	by	any	protocol	utilizing	the	offer/answer	model,	like	SIP	or	WebRTC.	

The	history	of	ICE,	STUN	and	TURN	started	with	STUN.		STUN	(in	its	first	incarnation	short	for	Simple	
Traversal	 of	 User	 Datagram	 Protocol	 (UDP)	 Through	 Network	 Address	 Translators	 (NATs))	 was	
published	as	RFC	3489	by	the	IETF	in	2003	as	an	answer	to	the	problems	associated	with	UDP	NAT	
and	firewall	traversal.		Meant	as	a	complete	solution	the	protocol	specification	also	states		

	
This	protocol	is	not	a	cure-all	for	the	problems	associated	with	NAT.	
			It	does	not	enable	incoming	TCP	connections	through	NAT.		It	allows	
			incoming	UDP	packets	through	NAT,	but	only	through	a	subset	of	

			existing	NAT	types.	

Field	 experience	 with	 RFC	 3489	 showed	 this	 observation	 to	 be	 correct	 and	 the	 subset	 not	 to	 be	
sufficient	to	adequately	address	several	real	life	scenarios.	A	better	solution	was	needed.		The	IETF	
MMUSIC	Working	Group	therefore	developed	a	new,	more	complex	standard	that	aimed	to	address	
the	shortcomings	of	the	“classic”	STUN	as	specified	in	RFC	3489.	The	standardization	process	lasted	
5	years	and	in	2010	these	three	standards	were	produced:		

- ICE	(Interactive	Connectivity	Establishment),	RFC	5245,	a	complex	protocol	on	the	client	side	
- a	new	STUN	(Session	Traversal	Utilities	for	NAT),	RFC	5389	
- TURN (Traversal	Using	Relay	NAT),	RFC	5766	

Although	the	combination	of	client-side	ICE	and	server-side	STUN/TURN	services	aims	to	address	all	
of	our	complex	issues	with	traversal	of	NAT,	firewalls	and	other	middle	boxes,	a	number	of	smaller	
extensions	have	appeared.		

STUN/TURN	are	umbrella	 protocols	 and	have	many	extensions	 (e.g.	DTLS,	 TCP,	 IPv6,	Origin,	 REST,	
OAuth,	Bandwidth,	etc.)	beyond	their	core	(RFC	5389,	RFC	5766).	It	is	a	living	and	evolving	standard	
and,	 as	 mentioned,	 the	 only	 widely	 accepted	 solution	 deployed	 to	 deal	 with	 the	 complex	
NAT/firewall	traversal	and	next	generation	IPv6	smooth	transition	problem	space.	

Technology	and	deployments	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

6	

2.2 ICE	and	WebRTC	

The	current	Internet-Draft	for	WebRTC	transports	specifies	ICE,	STUN	and	TURN	MUST	be	supported	
by	compliant	WebRTC	end	points.		The	specification	reads	as	follows:	

3.4. Middle box related functions

The primary mechanism to deal with middle boxes is ICE, which
is an appropriate way to deal with NAT boxes and firewalls
that accept traffic from the inside, but only from the outside
if it is in response to inside traffic (simple stateful
firewalls).

ICE [RFC5245] MUST be supported. The implementation MUST be a
full ICE implementation, not ICE-Lite. A full ICE
implementation allows interworking with both ICE and ICE-Lite
implementations when they are deployed appropriately.

In order to deal with situations where both parties are behind
NATs of the type that perform endpoint-dependent mapping (as
defined in [RFC5128] section 2.4), TURN [RFC5766] MUST be
supported.

WebRTC browsers MUST support configuration of STUN and TURN
servers, both from browser configuration and from an
application.

In order to deal with firewalls that block all UDP traffic,
the mode of TURN that uses TCP between the client and the
server MUST be supported, and the mode of TURN that uses TLS
over TCP between the client and the server MUST be supported.
See [RFC5766] section 2.1 for details.

In order to deal with situations where one party is on an IPv4
network and the other party is on an IPv6 network, TURN
extensions for IPv6 [RFC6156] MUST be supported.

https://tools.ietf.org/html/draft-ietf-rtcweb-transports-12

expires September 22, 2016	
	
ICE	 technology	 is	 unique	 in	 its	manner.	 In	 the	 negotiation	 between	WebRTC	 end	 points	 it	will	 by	
default	try	to	create	the	shortest	and	most	direct	way	between	the	communication	peers.	Less	hops	
between	the	peers	means	minimal	delay	and	 latency,	providing	a	substantially	 improved	real-time	
experience	for	the	end	users.	

2.3 Market	exploration	

We	explored	 the	STUN/TURN	product	and	services	market	and	 technology	possibilities	 in	order	 to	
understand	 the	 WebRTC	 ecosystem	 and	 landscape.	 This	 yielded	 multiple	 STUN/TURN	 server	
software	implementations	(listed	below),	though	we	were	surprised	to	find	less	commercial	services	

Technology	and	deployments	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

7	

than	expected.	We	found	a	number	of	open	source	standard	implementations,	with	various	quality	
and	stability.	

Open	source	server	implementations:	
● http://sourceforge.net/projects/stun/	
● http://turnserver.sourceforge.net/	
● https://github.com/jitsi/turnserver	
● https://www.resiprocate.org/ReTurn_Overview	
● http://www.creytiv.com/restund.html	
● https://github.com/coTURN/rfc5766-turn-server/	
● https://github.com/coTURN/coTURN	

	
Commercial	server	implementations:	

● http://www.eyeball.com/products/stun-turn-server/	
● http://help.estos.com/help/en-US/procall/5/erestunservice/dokumentation/index.htm	

	
Commercial	Services:	

● http://xirsys.com/	
● https://www.twilio.com/stun-turn	

	
The	commercial	services	typically	charge	for	bandwidth	relayed	through	TURN	connections.			

		

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT	

8	

3 PoC	distributed	STUN/TURN	service	

3.1 PoC	overall	setup	goals	

We	wanted	to	build	a	Proof	of	Concept	of	a	distributed	STUN/TURN	service	with	nodes	close	to	the	
end-user	 leveraging	 the	GÉANT	network	 footprint.	 The	PoC	needed	 to	provide	 STUN/TURN	 server	
backend	 functionality	 for	 WebRTC-enabled	 web	 applications	 and	 appliances	 supporting	 both	
WebRTC	and	other	RTC	protocols,	notably	SIP.	

	To	facilitate	the	objectives	of	this	technology	scout,	we	used	open	components	only.	This	provided	
the	 best	 opportunity	 to	 study	 all	 components	 comprising	 the	 service,	 test	 and	 implement	 various	
integrations	and	avoided	vendor	lock-ins.	It	also	provides	an	easy	path	from	PoC	to	pilot	service	for	
the	GÉANT	community	should	such	a	decision	be	made.	

Last	but	not	 least	WebRTC	 is	all	 about	 the	 flexibility	given	by	 the	marriage	of	open	standards	and	
open	components.	Accordingly,	we	endeavoured	to	build	it	as	transparent	as	possible,	making	all	the	
building	blocks	of	the	service	public	and	open.	All	third	party	components	used	were	open	source	as	
well.	

3.2 Credential	mechanisms	

Our	 pilot	 supports	 the	 two	most	widely	 used	 authentication	mechanisms.	We	 also	 investigated	 a	
third	option,	OAuth,	but	unfortunately	it	is	not	yet	implemented	by	browser	vendors.	

3.2.1 Long	Term	Credential	Mechanism	(username,	password,	realm	based)	

The	 original	 credential	 authentication	 mechanism	 for	 STUN/TURN,	 and	 still	 the	 most	 widely	
deployed	today.	We	used	it	to	support	legacy	VoIP	terminals,	like	hardphones	and	softphones,	(e.g.	
csipsimple	on	Android)	and	video-conference	endpoints	(e.g.	cisco	“C	series”).	Many	other	services	
and	 appliances	 only	 support	 this	 mechanism.	 It	 is	 defined	 in	 RFC	 5389,	 section	 10.2	
(https://tools.ietf.org/html/rfc5389	-	section-10.2)	

3.2.2 Time	Limited	Long	Term	Credential	Mechanism	(REST	API)		

This	mechanism	addresses	problems	and	issues	detected	in	the	original	method,	but	was	above	all	
designed	 for	Web/WebRTC	purposes	 (where	hiding	 a	 long	 term	password	 credential	 is	 difficult	 or	

PoC	distributed	STUN/TURN	service	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

9	

impossible).	 It	 is	 defined	 in	 https://tools.ietf.org/html/draft-uberti-rtcweb-turn-rest-00.	 This	
internet-draft	 is	no	 longer	being	worked	on,	the	concepts	have	been	absorbed	by	the	work	on	the	
OAUTH	 credential	mechanism	 (see	 section	 3.2.3	OAuth).	 The	mechanism	 specified	 in	 draft-uberti-
rtcweb-turn-rest-00	 is	 nonetheless	 currently	 implemented	 in	 browsers	 whereas	 the	 new	 OAuth	
mechanism	isn't	yet.		

The	 Time	 Limited	 Long	 Term	 Credential	 Mechanism	 tries	 to	 avoid	 the	 problem	 with	 username	
tracking	 by	 using	 a	 non-mandatory	 application	 specific	 string	 concatenated	with	 a	 colon	 sign	 and	
with	a	timestamp.	This	authentication	mechanism	provides	a	backend	REST	API	service	for	WebRTC	
applications	 and	 services.	 API	 Access	 control	 is	 provided	 by	 an	 API	 key/token	 that	 could	 be	
requested	and	obtained	from	a	self-service	portal.	The	API	and	the	API	key/token	provide	on	the	fly	
access	 to	 time	 limited	credentials,	which	may	 in	 turn	be	set	 in	 the	WebRTC/ICE	engine	of	 the	end	
user’s	 web	 browser.	 The	 WebRTC	 application	 can	 thus	 forward	 information	 about	 the	 client	
(location)	 IP	 address	 to	 the	 REST	 API.	 By	 using	 a	 GeoIP	 database,	 we	 can	 ascertain	 the	 client’s	
location	 and	 offer	 the	 closest	 STUN/TURN	 service.	 As	 a	 result,	 this	 will	 likely	 achieve	 the	 lowest	
possible	latency	between	peers.	

Secrets	are	shared	between	the	REST	API	(that	provides	time	limited	long	term	credentials)	and	the	
STUN/TURN	 servers	 (where	 these	 credentials	 are	 validated).	 According	 to	
https://tools.ietf.org/html/draft-uberti-rtcweb-turn-rest-00,	 the	 credentials	 provided	 by	 the	 API	
should	only	be	valid	for	a	limited	time.	In	our	case	it	is	set	to	one	day	and	for	extra	safety,	the	keys	
are	rotated.	This	mechanism	provides	another	time	limit,	so	all	shared	keys	older	than	two	days	are	
deleted	 from	 STUN/TURN	 servers	 and	 API	 servers.	 Thus,	 STUN/TURN	 servers	 cannot	 validate	
credentials	 older	 than	 2	 days	 since	 the	 shared	 key	 is	 no	 longer	 available.	 The	 key	 rotation	
mechanism	 adds	 a	 hard	 time	 to	 live	 limit,	 and	 prevents	 attacks	 based	 on	 manipulation	 of	 the	
STUN/TURN	server’s	 clock	or	ntp	 settings.	The	clock	and	ntp	 setup	 is	 therefore	very	 important	on	
both	sides	(REST	API	and	STUN/TURN	server).		

3.2.3 OAuth	

We	 have	 not	 tested	 the	 OAuth	 mechanism,	 since	 we	 are	 not	 aware	 of	 any	 client	 browser	
implementation	 that	 supports	 it.	 We	 did,	 however,	 find	 one	 feature	 request	 issue	 about	 it	 on	
chromium.org	 (https://goo.gl/Z69q6I),	 and	 after	 we	 approached	 Mozilla	 enquiring	 about	
implementation	status,	they	also	opened	an	issue	about	this	feature	(https://goo.gl/6n78rL).	

We	 also	 investigated	 possibilities	 of	 server	 side	 implementations.	 The	 chosen	 STUN/TURN	
implementation,	coTURN,	has	some	support	for	OAuth	token	validation	on	the	server	side.	It	is	not	
sufficient,	however,	since	we	also	need	a	tool	to	issue	self-contained	OAuth	tokens.		

In	 our	 search,	we	 could	 not	 find	 any	 PHP	 library	 that	 supports	 the	Authenticated-Encryption	with	
Associated-Data	(AEAD)	scheme.	We	did,	however,	find	some	code	samples	on	the	OpenSSL	website	
(https://goo.gl/UfuqTr).		

The	 coTURN	 server	 source	 code	 contains	 a	 coTURN	 client	 library	 (written	 in	 C).	 It	 is	 based	 on	
OpenSSL	 and	 even	more	 it	 is	 AEAD	 part	 is	 based	 on	 the	 abovementioned	 OpenSSL	 samples.	 The	
client	 library	 in	file	 	src/client/ns_turn_msg.c	contains	a	nice	function	that	could	be	reused	 in	 later	
phase	of	this	pilot	to	set	up	a	utility	that	could	issue	OAuth	self-contained	access	tokens	with	AEAD;	
	

PoC	distributed	STUN/TURN	service	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

10	

	
int encode_oauth_token(const u08bits *server_name, encoded_oauth_token
*etoken, const oauth_key *key, const oauth_token *dtoken, const u08bits
*nonce)
	
Our	conclusion	is	therefore	that,	when	the	browser	implementations	are	made	available,	we	could	
easily	extend	our	STUN/TURN	service	PoC	to	support	OAuth	as	well.	

3.3 Ansible	for	automated	node	deployment	

Ansible	 is	 a	 very	 handy	 tool	 that	 allows	 us	 to	 write	 playbooks	 to	 set	 up	 and	 manage	 identical	
operating	 system	 installations	 and	 service	 configurations,	 and	 to	 replicate	 these	 with	 ease.	
Playbooks	provide	clean	and	self-documenting	installations	and	steps.		

Debian’s	stable	Ansible	package,	v.1.6-1.7,	was	missing	desirable	functionalities.	We	therefore	opted	
to	use	the	latest	version	(v.1.9+).		

All	playbooks	are	available	on	the	following	public	GitHub	repository:	https://github.com/misi/stun-
ansible	

Please	note	that,	while	our	playbooks	are	functional,	they	are	not	fully	polished	and	finished.	They	
were	 developed	 to	 demonstrate	 and	 validate	 the	 concept	 of	 using	 Ansible	 for	 automated	 node	
deployment.	Quality	 improvement	of	 these	playbooks	could	be	a	work	 item	 in	a	next	phase,	after	
this	Proof	of	Concept.		

3.4 PoC	Overview	

We	installed	two	groups	of	servers	based	on	the	authentication	credential	type	(LTC	and	REST).	One	
central	node,	brain.lab.vvc.niif.hu,	provides	multiple	services	and	contains	the	central	master	MySQL	
database	for	the	supported	authentication	methods.		

Between	 the	 “brain”,	 the	master	MySQL	 database	 and	 the	 coTURN	 servers	 (MySQL	 slaves)	 sits	 a	
secure	encrypted	MySQL	master-slave	replication.	The	central	server	runs	a	web	server	service	with	
user	login	provided	by	the	eduGAIN	AAI.	This	site	is	the	entrance	to	the	STUN/TURN	pilot	service;	it	
gives	 general	 information	about	 the	 service	and	provides	a	 self-service	portal	where	 the	end	user	
may	request	access	(username/password	or	api_key)	to	the	service.	The	central	host	also	provides	
the	REST	API	service,	the	REST	API	documentation	and	test	site	based	on	Swagger	UI.		

The	overview	image	of	the	STUN/TURN	service,	below,	depicts	the	Long	Term	Credential	(LTC)	and	
the	REST	(Time	Limited	Long	Term	Credential)	services.	

PoC	distributed	STUN/TURN	service	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

11	

	

Figure	1:	STUN/TURN	service	overview	

3.5 Setup	of	the	PoC	hosts	

For	 the	coTURN	 instances	and	 the	central	node,	virtual	machines	with	Debian	Stable	 (Jessie)	were	
used	as	the	basis	on	which	several	packages	were	installed	and	configured.	

	

PoC	distributed	STUN/TURN	service	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

12	

3.5.1 VM	images	

For	the	coTURN	instances,	we	created	minimal	Virtual	Machines	(VM),	specifically:	

● Memory:	500M	physical,	500M	swap	
● Disk:	5GB	disk	
● CPU:	1	vCPU	
● OS:	Debian	Stable	(Jessie)	
● Architecture:	64	bit	

	
For	 the	 central	 node	 with	 web	 servers	 and	 more	 functionalities,	 we	 doubled	 the	 memory,	 but	
otherwise	used	almost	the	same	setup:	

● Memory:	1G	physical,	500M	swap	
● Disk:	5GB	disk	
● CPU:	1	vCPU	
● OS:	Debian	Stable	(Jessie)	
● Architecture:	64	bit	

3.5.2 Installation	and	configuration	of	the	PoC	Hosts	

During	 the	 setup,	 we	 configured	 and	 installed	 the	 packages	 as	 outlined	 below.	 For	more	 details,	
please	read	the	Ansible	playbooks.	

Configuration	step-by	step:	

● Install	basic	packages		
● Install	SSH	service	
● Add	admin	user	

○ Install	SSH	authorized	keys	
● Setup	sudo	

○ without	password	(use	for	user	auth	SSH-key	pair)	
○ keep	auth	socket	

● Setup	hosts	and	hostname,	and	domain	name	
● Setup	mailname,	exim4	mail	server	
● Install	NTP	time	protocol	
● Setup	timezone	
● install	and	setup	ferm,	so	setup	basic	netfilter	(the	linux	packet	filter)	
● Setup	network,	static	IPv4,	and	static	global	IPv6	address,	default	gateway,	network	mask	
● Setup	DNS,	two	IPv4	and	two	IPv6	DNS	resolver.	
● Install	TLS	certificate	

○ Create	a	PKI	group,	and	setup	ownership	accordingly	
○ Converting	TLS	private	key	to	PKCS1	format	because	MySQL	needs	it	later	in	such	a	

format	
● Install	and	setup	basic	MySQL	

○ Generate	root	password	and	store	it	in	.my.cnf	file	
○ Configure	MySQL	to	“skip-name-resolve”	for	security	reasons,	other	ways	MySQL	is	

trying	 to	 resolve	connecting	 IP-s	 from	reverse	DNS	and	apply	access	control	based	
on	 reverse	 lookup	 result	 if	 possible,	 and	 only	 fall	 back	 to	 IP	 if	 there	 is	 no	 reverse	

PoC	distributed	STUN/TURN	service	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

13	

DNS.	We	turned	off	this	reverse	lookup,	to	use	deterministic	way,	so	use	every	time	
only	the	raw	IP	address	in	access	control.	

○ MySQL	 is	 using	 Latin1	 charset	 by	 default,	 we	 didn’t	 change	 this	 to	 UTF8	 because	
coTURN	supports	only	8	bit	ASCII	charset.	

○ Setup	MySQL	Server	and	Client,	Dump	to	use	TLS	key	and	certificate,	and	CAroot	(we	
use	the	mentioned	private	key	in	PKCS1	format)	

● Setup	MySQL	Replication.		
○ Setup	 MySQL	 server	 identifiers	 “server-id”	 for	 each	 host,	 the	 master	 server	 has	

server-id=1	because	 replication	 is	 configured	by	default	on	 slave	 side	 in	MySQL	 to	
replicate	from	server-id=1	without	any	further	configuration,	so	this	is	the	practical	
reason	we	gaver	server-id=1	to	master	server.	

○ Enabling	MySQL	binary	logging	on	master	side.	
○ Setup	replication	databases	
○ Setup	MySQL	 replication	 user	 on	master	 side	with	 limited	 access	 from	 client	 IPv4	

and	IPv6	addresses	
○ 	Setup	FERM	open	ports	from	client	IP-s	on	master	side	to	enable	connect	to	MySQL	

master	
○ Generate	MySQL	replication	password,	setup	on	master	side	
○ Setup	encrypted	replication	using	PKI.	
○ Dump	master	database	and	import	it	
○ Start	MySQL	Replication	on	slave	side	

● Setup	CoTURN	
○ Install	coTURN	package	from	Jessie	backport	repository.	
○ Import	MySQL	database	Schema	and	Events	on	Master	side	
○ Generate	MySQL	password	for	coTURN	on	the	Slave	side	and	add	new	MySQL	user	

with	the	right	privileges	and	restricted	to	loopback	IP	addresses.	
○ Setup	options	in	coTURN	config	file.	
○ Add	coTURN	to	PKI	group	to	access	X.509	private	key	and	certificate.	
○ Configure	 ferm,	 /Netfilter,	 the	 linux	 packet	 filter/	 to	 allow	 coTURN	 STUN/TURN	

service	ports	and	the	media	relay	port	range.	
● Apache	

○ Install	apache	packages	
○ Enable	modules:	rewrite,	ssl,	headers,	expires	
○ Disable	default	sites	
○ Configure	and	enable	the	production	site	

■ Redirect	from	port	80	to	443,	using	the	rewrite	modul.	
■ Configure	SSL	certificates	and	key	files	

● Download	and	setup	GEOIP	
○ Download	MaxMind	geoliteCity	Database	(IPv4	and	IPv6).	

● PHP5	setup	
○ Install	PHP5	and	modules	and	php5-mod-apache2	

● SimpleSAMLphp	(SSP)	Setup	
○ Install	SSP	Debian	package	
○ Copy	cert	and	configure	PKI	in	SSP	
○ Cron	module		

■ Generate	random	secret	for	cron	module	
■ Create	 /etc/cron.d/simplesamlphp	 configure	 with	 the	 generated	 user	

password	
■ Enable	and	configure	cron	module	

○ Configure	metarefresh	module		

PoC	distributed	STUN/TURN	service	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

14	

■ Use	eduGAIN	metadata	
■ Enable	metarefresh	module.	
■ Configure	metadata	directory	ownership	and	permissions	
■ Copy	privacy	statement	(privacy.html)	
■ Install	and	setup	attributescope	module	
■ Configure	apache2	SSP	config	
■ Increase	PHP	memory	limit	and	max	execution	time	limit.	

● COMPOSER	
○ Download	and	install	composer	

● WEB	Applications	
○ Checkout	web	application	from	git	repository		
○ Setup	MySQL	password	

● Main	Web	application	dependencies	
○ "phpmailer/phpmailer":	"^5.2"	to	send	out	emails	
○ "hackzilla/password-generator":	"^1.1"	to	generate	password	

● REST	API	dependencies	
○ "slim/slim":	"^2.6"	The	REST	API	is	using	slim	php	micro	framework	
○ "zircote/swagger-php":	"^2.0"	Swagger	API	is	used	to	generate	documentation	from	

the	php	source	of	the	API	
○ "geoip/geoip":	 "~1.14",	 The	 originally	 built	 in	 PHP	 geolite	 implementation	 doesn't	

have	support	for	IPv6,	so	I	had	to	install	this	package	to	support	IPv6	
○ "mjaschen/phpgeo":	"^0.3.0"	REST	API	ordering	result	distance	between	client	and	

server	 coordinates.	We	 use	 Vincenty's	 Formula	 to	 calculate	 the	 distance	 between	
two	coordinates.	

3.6 Database	Schemas	and	extensions	

We	use	a	MySQL	database	server	and	master-slave	replication	to	distribute	the	shared	secret.	The	
two	different	types	of	credential	methods	have	separate	databases,	and	are	replicated	accordingly.		

3.6.1 Database	schema	for	Long	Term	Credential	

We	use	 the	 coTURN	database	 structure	with	 a	 slight	 extension,	 in	order	 to	 identify	 the	 federated	
user.	We	thus	added	the	fields	“eppn”,	“email”	and	“displayname”	to	the	turnusers_lt	table:	

PoC	distributed	STUN/TURN	service	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

15	

	

	

Figure	2:	Table	`turnusers_lt`	

3.6.2 Database	schema	for	REST	support	

The	REST	API	database	structure	is	also	based	on	the	default	coTURN	SQL	schema,	but	was	extended	
with	more	tables	 to	store	the	coTURN	server	 IP	addresses	and	 locations,	plus	 the	different	service	
types	that	they	provide.		

In	the	database	on	the	master	side,	there	are	events	that	generate	the	new	shared	secret	key	daily,	
removes	the	obsolete	old	key	and	deletes	api_keys	that	are	older	than	one	year.	

To	add	a	new	STUN/TURN	node,	a	manual	registration	process	is	currently	used.	It	uses	the	coTURN	
IP	service	table	to	store	STUN/TURN	server	FQDNs,	IPv4	and	IPv6	addresses	as	well	as	a	description	
of	 the	STUN/TURN	service,	 transport	protocol	 (udp,	 tcp,	 sctp)	and	portnumber.	We	do	not	have	a	
self-service	or	web	interface	for	this	function	yet,	but	this	could	be	implemented	at	a	later	stage	to	
allow	the	server	operator	to	manage	his	servers	and	its	offerings.		

About	the	tables	and	structures:	

● The	“token”	table	contains	the	api_key	used	for	granting	access	to	the	REST	API	
○ The	created	field	is	the	timestamp	of	the	record	insertion	in	the	table.	
○ The	token	could	be	requested	after	eduGAIN	auth	and	could	be	revoked	after	a	year.	

It	is	done	by	a	MySQL	event	called	clean	token:	
	
EVENT `clean_token` ON SCHEDULE EVERY 1 YEAR STARTS '2015-01-01 00:00:00' ON
COMPLETION NOT PRESERVE ENABLE DO BEGIN
DELETE FROM `token` where created + INTERVAL 1 YEAR > NOW();
END

	
● The	“turn_secret”	table	is	used	to	store	the	shared	secret	used	for	credential	generation.	

○ The	timestamp	field	contains	the	date	of	the	record	insertion.	
○ The	SharedSecret	 event	generates	a	 secret	and	clean	keys	 that	are	older	with	

day	or	longer	of	the	actual	time:	
	
EVENT `SharedSecret` ON SCHEDULE EVERY 1 DAY STARTS '2015-11-25 00:00:00' ON
COMPLETION NOT PRE

PoC	distributed	STUN/TURN	service	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

16	

SERVE ENABLE DO BEGIN
 DECLARE secret VARCHAR(42);
 SELECT SUBSTR(CONCAT(MD5(RAND()),MD5(RAND())),1,64) INTO secret;
 INSERT INTO `turn_secret` (`realm`,`value`) VALUES
('lab.vvc.niif.hu',secret
);
 DELETE FROM `turn_secret` where realm='lab.vvc.niif.hu' and timestamp +
INTERVAL 1 DAY < NOW();
END

○ The	“server”	table	contains	the	FQDN	of	the	STUN/TURN	servers	

■ It	has	a	one-to-many	relation	with	the	“ip”	table	
○ The	“ip”	table	contains		

■ The	server	ip	address	
■ GPS	coordinates	of	the	IP	based	on	geolite	database	lookup	
■ Preference	 value	 to	 help	 in	 ordering	 multihomed	 servers.		

e.g.	it	could	be	used	to	express	IPv4/IPv6	preference.		
○ The	“service”	table	contains	the	service	port	and	protocol	description	

■ Preference	value	is	to	help	in	ordering	of	services.	
■ Transport	protcol	udp,	tcp,	stcp	etc.	
■ uri_schema	stun/turn		

● If	secure	communication	used	then	stuns/turns	
	

The	 database	 structure	 and	 relations	 are	 further	 explained	 by	 the	 Entity	 Relation	Model	 diagram	
below:	

	

Figure	3:	Database	structure	and	relations	

	

PoC	distributed	STUN/TURN	service	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

17	

3.7 PoC	Web	Interface	and	Authentication	schemas	

The	PoC	service	is	currently	available	on	https://brain.lab.vvc.niif.hu.	

The	 Web	 interface	 source	 code	 is	 available	 on	 the	 (public)	 GitHub	 repository:	
https://github.com/misi/stun-web.	

Access	 to	 the	pilot	 service	 is	 limited	 to	 the	NREN	community	and	protected	with	eduGAIN	AAI	by	
propagation	 from	 the	Hungarian	 Identity	 eduID	 Federation	 (HREF).	 After	 logging	 in,	 the	 user	may	
request	 access	 credentials	 for	 the	 STUN/TURN	 infrastructure	 (i.e.	 username	and	password	 for	 the	
Long	Term	Credential	Authentication	Mechanism	and	a	token	for	accessing	the	REST	API).	The	REST	
API	 has	 a	 very	 simple	 Swagger-based	 documentation	 and	 test	 site	 here:	
https://brain.lab.vvc.niif.hu/restapi	 (temporarily	 the	 /stun	 and	 the	 /turn	 GET	 calls	 results	 are	
identical).	

3.8 REST	API	

The	REST	API	and	the	Swagger	UI-based	test/doc	site	source	are	available	on	the	following	(public)	
GitHub	repository:	https://github.com/misi/stun-api.	

3.9 Geolocation	for	load-sharing	and	load-balancing	

Using	the	closest	possible	STUN/TURN	service	yields	the	lowest	round	trip	time,	thus	minimal	delay	
and	a	better	end-user	experience.	In	theory,	load	balancing	and	load	sharing	may	sound	very	simple,	
but	implementing	it	in	the	service	showed	it	to	be	complex.	We	go	through	the	different	supported	
authentication	mechanisms	and	show	how	geo	load-sharing	and	load-balancing	was	achieved.			

3.9.1 Geolocation	for	Long	Term	Credential	(LTC)	

In	 our	 current	 testbed	we	utilize	 two	Hungarian	 servers	 that	 provide	 the	 STUN/TURN	 service	 PoC	
with	LTC	authentication	mechanism.	Other	nodes	can	be	added.	

We	investigated	the	following	mechanisms	to	provide	load	distribution	and	a	way	to	find	the	closest	
server:	

1. Simple	round	robin	DNS		

Not	desirable	as	it	does	not	return	the	closest	server	to	the	client;	only	for	load	distribution.	

2. DNS	geographic-based	load	balancing		

This	is	what	we	are	currently	using.	The	Debian	bind9	package	has	a	built-in	patch	that	provides	
GeoIP	functionality.	Based	on	that	we	may	create	an	acl	and	create	different	views	for	different	
groups	of	countries.	Partitioning	is	thus	based	on	the	country	code,	which	is	resolved	from	the	IP	

PoC	distributed	STUN/TURN	service	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

18	

of	 the	 DNS	 lookup	 client	 (resolver).	 It	 was	 configured	 according	 this	 guide:	
http://www.caraytech.com/geodns/.	

3. Anycast	IP	load-balancing	

Anycast	 IP	 load-balancing	has,	 like	any	other	mechanism,	its	pros	and	cons.	This	setup	needs	a	
lot	more	work	on	 the	network	 side	 than	 the	others.	However,	 it	works	on	 the	 lowest	 layer	 in	
routing	of	the	Internet	Protocol	and	is	very	robust.	To	start	a	service	like	this,	we	have	to	request	
from	RIPE,	or	a	similar	 large	 IP	registrar	organization,	a	Service	provider	 independent	 IPv4	and	
IPv6	address	range,	a	/24	for	ipv4	and	/48	for	IPv6.	It	then	needs	configuration,	propagation	in	
BGP	 and	 configuration	 in	 the	 local	 BGP	 filtering	 to	 be	 accepted.	 This	 is	 time	 consuming,	 and	
every	European	NREN	would	have	to	be	asked	to	accept	such	prefixes.	

3.9.2 Geolocation	for	the	Time	Limited	Long	Term	Credential	(REST)	

The	 PoC	 service	 that	 facilitates	 the	 REST	 auth	 mechanism	 is	 provided	 by	 one	 Norwegian,	 one	
Portuguese,	 and	 two	Hungarian	 nodes.	 The	 REST	API	 requires	 some	 information	 from	 the	 user	 in	
order	 to	 be	 able	 to	 find	 the	 closest	 server	 to	 his	 location	 (e.g.	 IP	 address,	 a	 GPS	 coordinate	 or	 a	
Country	Code).	 Fetching	 the	 IP	address	 is	 the	easiest	 to	 implement,	as	 it	may	be	extracted	by	 the	
script	(e.g.	PHP)	served	by	the	web	server.	This	is	also	the	most	convenient	alternative	for	the	REST	
client	service	and	the	WebRTC	service	operator.	It	may	not	be	without	implications,	however,	since	
it	makes	user	tracking	possible	and	could	thus	raise	concerns	about	privacy.		

In	 this	 PoC,	 as	 it	 is	 run	 “in-house”	 by	 the	 NREN	 community,	 we	 do	 not	 have	 any	 concerns	 over	
privacy	issues.	Our	pilot	REST	API	is	therefore	implemented	using	IP	address;	it	receives	the	client	IP	
address	 from	 the	 API	 call	 and	 returns	 the	 two	 closest	 servers	 based	 on	 GeoLite	 database	 GPS	
coordinates.	 It	 uses	 the	Vincenty	 formula	 to	 calculate	 the	 distance	 between	 the	GPS	 coordinates.	
Should	the	client	IP	be	missing	in	the	REST	API,	the	API	will	return	two	random	STUN/TURN	servers.		

To	make	the	client	service	more	secure,	we	could	resolve	to	using	the	country	code	only.	This	would,	
however,	require	the	client	service	to	implement	a	mechanism	to	resolve	the	country	code	from	the	
end	user	 IP	address.	From	a	privacy	point	of	view,	 it	 is	nonetheless	a	better	option	and	should	be	
considered	a	mandatory	requirement	(for	external	service	providers).	

	

		

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT	

19	

4 Lessons	learned	

A	continuous	service	status	monitoring,	with	active	tests,	is	very	important	and	we	propose	to	place	
more	emphasis	on	this	in	a	possible	later	phase.		

We	also	see	the	need	for	an	operations	team	to	look	after	the	service	monitoring,	troubleshooting	
end-user	issues,	updating	OS	packages	and	continuously	developing	the	service	to	keep	up	with	the	
fast	 evolving	 standards	 and	 browser	 implementation	 changes.	 We	 also	 learned	 that	 browser	
STUN/TURN	implementations	differ	a	lot	and	that	they	are	slow	to	take	on	board	these	standards.		

We	are	very	satisfied	with	the	PoC	results.	They	suggest	to	us	that	only	small	updates	to	the	pilot	are	
required	in	order	to	build	a	“real	service”.	

4.1 Technology	strength	

We	 have	 already	 established	 that	 ICE/STUN/TURN	 is	 the	 only	 open	 standards-based	 technology	
available	to	eliminate	the	barriers	imposed	by	firewalls/NATs.	It	realizes	a	connection	between	peers	
to	make	possible	end-to-end	real	time	communication	and	tests	the	connection	in	order	to	make	the	
communication	network	more	 reliable.	 It	 also	 handles	 IPv4,	 IPv6	multi-homed	 situations	 and	 IPv6	
transitioning.	

In	 coTURN	we	 found	 a	 simple,	 but	 rock	 solid	 and	 reliable	 implementation.	Written	 in	 C,	 it	 is	 fully	
optimized	and	designed	with	a	very	efficient	CPU	and	memory	model.	 It	uses	 libevent2	as	a	high-
performance,	 industrial-strength,	 network	 IO	 engine.	 We	 think	 this	 implementation	 is	 ready	 and	
suitable	for	use	in	a	real	service.	

4.2 Technology	shortcomings	

We	 do	 not	 see	 any	 standardization	 level	 problems.	 STUN/TURN	 standards	 are	 mature	 and	 well	
implemented.		

Although	we	did	 find	 that	 the	new	OAuth	 access	 token	 credential	mechanism	 standard	 is	 not	 yet	
implemented	 in	 browsers,	 it	 is	 nonetheless	 promising	 to	 find	 it	 in	 the	 roadmaps	 for	 the	 biggest	
browser	vendors.		

	

Lessons	learned	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

20	

We	 found	 that	 there	 is	 a	 lack	 of	 PHP	 implementations	 of	 the	 Authenticated-Encryption	 with	
Associated-Data	(AEAD)	algorithm,	but	worked	around	this	by	using	a	coTURN	client	library	to	create	
the	OAuth	access	token	with	AEAD.		

One	issue	regarding	the	coTURN	implementation	is	that	it	is	not	yet	UTF-8	ready,	but	rather	uses	8	
bit	ASCII	 encoding	 for	 strings.	 The	 implication	of	 this	 is	 that	UTF8	usernames	 cannot	be	 stored	or	
used.	UTF-8	support	is,	however,	on	the	project’s	roadmap.		

Although	 we	 did	 not	 find	 any	 major	 problems	 with	 this	 technology	 we	 feel	 confident	 that	 any	
issues/shortcomings	would	be	addressed	within	reasonable	time;	this	is	a	field	that	evolves	rapidly,	
with	a	number	of	significant	companies	depending	on	it.		

WebRTC	 is	 a	 complex	 technology	 leveraging	 ICE/STUN/TURN.	 It	 continues	 to	 expand	 its	 market	
share,	with	a	promise	of	continuity,	reliability	and	quality.	WebRTC	has	contributed	significantly	to	
make	ICE	to	become	a	mainstream	technology.	

4.3 STUN/TURN	service	meets	R&E	community	needs	

Assumed	real-time	communication	requirements	from	our	community:	
	

● User	friendly	UI	and	UX	
● Instant	and	reliable	communication	from	anywhere	(place/network)	
● Communication	from	any	device	(desktop,	tablet,	mobile)	
● Communication	between	anyone		

○ Global	reach	
○ Ease	of	finding	contacts	
○ If	possible,	standards-based	

● Secure	
○ Trusted	
○ Use	eduGAIN	AAI	if	possible	

	
The	 community	 demands	 a	 multimedia	 communication	 service	 that	 can	 be	 used	 anywhere	 and	
anytime,	 on	 any	 device	 with	 anyone,	 in	 any	 context.	 Our	 ICE	 implementation,	 coupled	 with	 the	
STUN/TURN	 servers,	 provides	 a	 proof-of-concept	 that	 demonstrates	 how	 this	may	be	 achieved.	 It	
tests	 connectivity	 before	 any	 media	 travels	 through	 a	 newly	 established	 connection,	 and	
continuously	tries	to	detect	failures	and	recover	 if	possible.	 It	helps	to	establish	a	tested	and	error	
free	 communication	 channel,	 regardless	 of	 network	 conditions	 and	 connections	 (local	 network,	
wireless,	4G/mobile),	IP	protocol	version,	or	any	number	and	combination	of	NATs	and	firewalls.	

We	can	see	WebRTC	deployments	growing	extremely	fast.	And	since	existing	platforms,	such	as	VoIP,	
video	conferencing	and	other	standards-based	communication	systems	(e.g.	SIP	and	XMPP/JABBER)	
could	also	benefit,	we	propose	to	operate	a	STUN/TURN	service	for	our	NREN	community.			

As	 well	 as	 real-time	 media	 transmission	 (e.g.	 streaming	 and	 video	 conferencing),	 real-time	 data	
collection	(e.g.	WebRTC	data	channel)	also	depends	on	the	ICE	and	STUN/TURN	infrastructure.	The	
WebRTC	data	channel	opens	new	ways	 for	 real-time	data	collection	 from	sensors,	 file	 sharing	and	
even	 peer-to-peer	 content	 delivery	 networks.	 In	 other	 words,	 the	 technology	 has	 applications	

Lessons	learned	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

21	

beyond	audio	and	video	media	transmission	and,	as	such,	our	community	could	benefit	further	from	
a	distributed	STUN/TURN	service.		

		

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT	

22	

5 Conclusion	

We	 note	 that	 ICE	 and	 STUN/TURN	 standard	 technologies	 are	 getting	 more	 and	 more	 attention,	
traction	and	adoption,	and	they	are	used	more	and	more	widely.	Its	adoption	is	already	happening	in	
the	communication	networks	of	our	community.	To	build	and	operate	such	service	locally	for	every	
NREN,	however,	is	not	feasible	due	to	limited	NREN	resources.		

We	propose	that	a	European,	or	even	world-wide,	co-operated	NREN	STUN/TURN	service	 is	worth	
serious	consideration.	An	important	aspect	to	study	in	this	regard	will	be	whether	to	build/make	this	
service	“in-house”,	or	buy	from	the	market.	This	will,	of	course,	require	an	in-depth	cost	and	market	
analysis	beyond	the	scope	of	this	work.	

Build	or	Buy?	

In	our	observations,	 there	are	very	 few	service	providers	that	provide	STUN/TURN	services.	This	 is	
likely	due	to	the	fact	that	most	of	the	market	players	are	building	their	own	silos,	running	their	base	
layer	and	STUN/TURN	service	in-house.	When	considering	offers	from	service	providers,	we	have	to	
take	in	account	-	and	pay	extra	attention	to	-	the	real-time	data	security	and	privacy	concerns	(e.g.	to	
avoid	interception	during	media	relaying,	avoid	user	tracking	or	any	other	form	of	data	collection).	
We	have	to	investigate	what	kind	of	authentication	mechanisms	the	service	providers	provide,	and	
how	they	solve	the	closest	server	 location	problem.	 In	 the	case	of	TURN,	 it	 is	especially	 important	
how	the	STUN/TURN	servers	are	distributed	around	the	globe	(location	and	numbers)	and	what	kind	
of	mechanism(s)	they	use	to	choose	the	closest	server.		

Considerations	for	Future	Directions	

We	propose	to:	

● Validate	if	it	is	possible	to	use	container	paradigm	with	the	STUN/TURN	pilot	and	investigate	
what	benefits	and/or	drawbacks	such	a	solution	could	introduce.		

● Check	and	validate	Anycast	IP-based	load	balancing	with	Long	Term	Credential		
● Extend	our	REST	API	features	with	nearest	server	location	function	based	on	the	End	User	

Country	Code	or	GPS	coordinates.	
● Set	up	service	monitoring:		

○ Actively	monitor	with	test	binding	and	allocation	requests	on	different	kinds	of	
protocols,	using	web	browsers	or	the	coTURN	test	client	the	STUN/TURN	service.	

○ Monitor	hosts	OS	basic	services	
○ Monitor	coTURN	admin	interface	information	
○ Monitor	with	the	browsers’	peerconnection	implementation.	WebRTC	Call	tests.	

● Set	up	a	central	 log	server	and	replicate	all	 servers	 to	 log	 to	 this	 to	help	 in	more	effective	
troubleshooting.	

Conclusion	

SA8T2	Internal	Deliverable	
STUN	and	TURN:	how	WebRTC	deals	with	
Firewalls	and	NAT		

23	

● Support	OAuth	authentication	mechanism.	We	investigated	and	found	lack	of	client	
implementations	in	two	most	used	browsers.	Firefox	is	not	implemented,	and	does	not	exist	
in	Chrome	(https://bugs.chromium.org/p/webrtc/issues/detail?id=4907).	

● Investigate	extension	of	the	service	with	STUN	Origin	support.	And	based	on	Origin	the	
selection	of	REALM	(https://tools.ietf.org/html/draft-ietf-tram-stun-origin-06).	This	is	
implemented	in	coTURN.	

● Investigate	extension	of	the	service	with	bandwidth,	connection	limiting	per	user	and/or	
global.	(http://tools.ietf.org/html/draft-thomson-tram-turn-bandwidth-01).	This	is	
implemented	in	coTURN.	

	
WebRTC	and	STUN/TURN	technology	deployment	 is	already	huge	because	 it	exists	 in	almost	every	
web	browser,	allowing	an	increasing	number	of	applications	to	utilize	this	technology.	WebRTC	is	not	
restricted	to	the	web	browser;	it	also	has	native,	open	source,	implementations	which	allow	native	
applications	to	the	party	(including	mobile	OSes	such	as	Android	and	iOS).	

We	see	that	the	“Internet	of	Things”	and	Smart	City	applications	are	already	using	the	WebRTC	data	
channel	as	the	transport	layer	for	real-time	data	collection	from	sensors	(hence	they	are	also	using	
underlying	ICE/STUN/TURN	technologies).	We	expect	to	see	a	lot	more	of	these	types	of	applications	
in	the	future.	These	apps	will	also	exploit	all	of	the	benefits	of	the	ICE/STUN/TURN	protocols.	

With	an	exhausted	IPv4	address	pool,	NAT	and	multiple	layers	of	NAT	will	continue	to	make	barriers.	
A	smooth	transition	to	IPv6	is	still	also	a	difficult	task,	but	ICE/STUN/TURN	provides	a	way	to	address	
these	complex	challenges.	We	don’t	see	any	other	competing	technology	that	could	fulfill	 the	Real	
Time	Application	NAT/firewall	Traversal	requirements	like	ICE	do.	We	are,	as	such,	confident	that	the	
usage	of	this	technology	will	only	continue	to	grow.	It	will	also	spawn	various	extensions,	adding	to	
the	continuous	improvement	of	its	implementations.		

In	closing,	attention	must	be	drawn	to	how	this	technology	may	add	value	to	our	community.	And,	
not	 least,	 what	 actions	 (immediate	 and	 future)	 are	 required	 from	 us	 in	 order	 to	 reap	 the	 most	
benefits	both	in	the	shorter-	and	longer	term.			

Based	 on	 our	 findings	 from	 the	 piloted	 ICE/STUN/TURN	 service;	 to	 provide	 and	 establish	 a	
STUN/TURN	service	for	our	Higher	Education	and	Research	community	would	not	be	a	bad	place	to	
start…		 	

