
	

30-03-2016	

SA8T2	Internal	Deliverable	
Technology	Scout:	Stream	and	record	
lectures	with	WebRTC	

SA8T2	Internal	Deliverable	

Contractual	Date:	 30-04-2016	
Actual	Date:	 30-03-2016	
Grant	Agreement	No.:	 691567	
Activity:	 12/SA8	
Task	Item:	 Task	2	–	WebRTC	
Nature	of	Deliverable:	 R	(Report)	
Dissemination	Level:	 PU	(Public)	
Lead	Partner:	 NORDUnet	(UNINETT)	
Authors:	 Simon	Skrødal	(UNINETT)	

	
©	GEANT	Limited	on	behalf	of	the	GN4	Phase	1	project.	
The	research	leading	to	these	results	has	received	funding	from	the	European	Union’s	Horizon	2020	research	and	
innovation	programme	under	Grant	Agreement	No.	691567	(GN4-1).	
	

Abstract	
This	document	reports	on	results	and	findings	from	a	technical	investigation	into	WebRTC’s	maturity	for	lecture	recording,	
in	the	context	of	European	higher	education	and	research.	The	technology	scout	was	conducted	by	the	Service	Activity	8	
(SA8,	Real	Time	Communication	and	Media),	Task	2	 (WebRTC)	 team	as	part	of	 the	GN4-1	project.	This	 report	should,	as	
such,	be	read	in	context	of	the	related	work	produced	by	GN4-1	SA8-T2.	



		

SA8T2	Internal	Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC		 1	

Table	of	Contents	

Executive	Summary	 1	

Introduction	 1	
1.1	 About	this	document	 1	

1.1.1	 Target	audience	 1	
1.1.2	 About	the	author(s)	 1	
1.1.3	 Important	reading	note	on	WebRTC	technology	maturity	 1	

1.2	 Background	 2	
1.2.1	 WebRTC	 2	
1.2.2	 Screencast	 2	

1.3	 Technology	scout	objective	 3	
1.4	 Rationale	 4	

2	 Technology	Overview	 5	
2.1	 Media	Capture	and	Streams	 5	
2.2	 Screen	Capture	 5	
2.3	 MediaStream	Recording	 7	

3	 Implications	of	WebRTC	in	lecture	streaming	and	recording	 8	
3.1	 Two	different	views	for	storing	lecture	recordings	 8	
3.2	 WebRTC	implications	for	these	two	different	views	 9	
3.3	 Considerations	 9	

4	 Lessons	Learned	 11	

5	 Conclusions	 12	

	

Table	of	Figures		 	

Figure	1:	Screencast	layout	sample	 3	
	



		

SA8T2	Internal	Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC		 1	

Executive	Summary	

A	host	of	well-established,	as	well	as	emerging,	 technologies	are	used	 to	 facilitate	online	 teaching	
and	 learning.	 Solutions	 pertaining	 to	 web	 conferencing,	 lecture	 streaming	 and	 recording	 are	
changing	the	way	education	is	perceived,	delivered	and	consumed.		

By	removing	the	barriers	of	time	and	location,	online	technologies	offer	unprecedented	flexibility	to	
teaching,	 learning	and	research.	Education	 is	made	accessible	to	a	segment	of	our	population	that	
would	otherwise	find	it	difficult,	or	even	impossible,	to	access	their	field	of	study.	Lectures	may	be	
streamed	 from	 one	 campus	 to	 another,	 or	 indeed	 from	 one	 kitchen	 bench	 to	 the	 other,	 and	
recorded	for	later	review	at	the	learner's	convenience.	

Much	attention	is	given	to	WebRTC	and	its	potential	for	online	education	by	means	of	live	streaming	
of	 audio/video/data	 in	 a	 web-conferencing	 context.	 Less	 known	 is	 the	 standard’s	 ambition	 to	
facilitate	desktop	capture	(acquire	and	stream	what	happens	on	the	screen)	as	well	as	the	recording	
of	all	media	content.	

With	this	in	mind,	this	technology	scout	set	out	to	investigate	WebRTCs	maturity	regarding	all	facets	
required	to	implement	a	zero-install,	browser-based,	screencast	(web)application	for	streaming	and	
recording	combined	feeds	from	microphone,	web	camera	and	screen	—	utilising	only	WebRTC	and	
HTML5	standards.	

Our	findings	suggest	that	browser	implementations	of	WebRTC	standards,	specifically	pertaining	to	
recording	and	screen	capture,	are	insufficient.	Implementations	are,	however,	progressing	at	a	very	
rapid	pace.	We	therefore	recommend	that	this	area	is	revisited	in	the	near	future,	e.g.	early	2017.	

	



		

SA8T2	Internal	Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC		 1	

1 Introduction	

1.1 About	this	document	

This	report	documents	an	investigation	into	the	technical	feasibility	of	using	WebRTC	technology	for	
lecture	streaming	and	recording	services	in	the	context	of	European	higher	education	and	research.		
It	 also	 provides	 a	 comparison	with	 how	 traditional	 services	 for	 lecture	 recording	 are	 constructed,	
and	what	implications	a	WebRTC-based	equivalent	may	have.	

The	technology	scout	was	undertaken	as	part	of	the	Geant4	Phase	1	project	by	the	WebRTC	Task	2	
(T2);	 one	 of	 three	 tasks	 of	 the	 Real	 Time	 Communication	 and	 Media	 activity	 (SA8).	 	 This	 report	
should,	as	such,	be	read	in	context	of	the	related	work	produced	by	GN4-1	SA8-T2.	

The	WebRTC	task	ran	from	1	May	2015	to	30	April	2016.	

1.1.1 Target	audience	

This	 document	 targets	 technical	 management	 and	 specialists,	 in	 particular	 those	 working	 in	 the	
fields	of	real	time	communications,	eLearning	and	eResearch.	

1.1.2 About	the	author(s)		

Simon	 Skrødal	 is	 very	 passionate	 about	 ICTs	 and	 their	 value-adding	 potential	 for	 teaching	 and	
learning.	 Following	 degrees	 in	 computer	 science,	 Simon	 was	 awarded	 the	 University	 Doctoral	
Research	Medal	 for	 his	 PhD	 research	 and	 development	 of	 a	 computer	 simulation	 for	 pre-service	
teacher	training.	

Simon	 has	 worked	 as	 a	 Senior	 Engineer/Advisor	 for	 the	 national	 UNINETT	 eCampus	 services	
deployment	programme	since	2011,	where	he	is	heavily	involved	in	establishing	infrastructures	and	
services	for	teaching	and	learning	in	the	Norwegian	Higher	Education	sector.	

1.1.3 Important	reading	note	on	WebRTC	technology	maturity	

Research	and	writing	of	this	document	took	place	in	February/March	2016	and	provides	an	accurate	
account	 of	 the	WebRTC	 technology	 status	 from	 this	 period	 in	 time.	 However,	 keep	 in	mind	 that	
WebRTC,	particularly	in	regard	to	browser	support,	is	in	a	continuous	state	of	flux.	



		

SA8T2	Internal	DeliverableSA8T2	Internal	
Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC	

2	

1.2 Background	

1.2.1 WebRTC	

WebRTC	 (Web	 Real-Time	 Communication)	 facilitates	 a	 new	 generation	 of	 communication	
applications	that,	in	many	cases,	promises	considerable	benefit	to	research	and	education.	WebRTC	
gives	web	browsers	access	to	the	host	user's	microphone	and	webcam	without	plugins/extensions	
and	provides	 functionality	to	efficiently	and	securely	stream	these	feeds	(and	other	data)	over	the	
internet	in	real-time.	The	WebRTC	technology	roadmap	includes	features	for	screen	capture	as	well	
as	a	facility	to	record	and	store	content.	

Benefits	 of	 WebRTC	 include	 simplified	 (i.e.	 better)	 user	 experience	 (no	 additional	
installs/dependencies),	 cross-platform	 support	 (one	 solution	 fits	 all),	 open	 and	 standards-based	
technology	(that	is	simple	to	use),	security	(peer-to-peer	encrypted	data)	and	performance	(reduced	
latency).	

WebRTC	 is	 platform	 independent	 and,	 at	 its	 core,	 requires	 no	 dedicated	 software	 or	 extensions	
(other	 than	 a	 web	 browser).	 The	 standard	 lowers	 the	 threshold	 to	 develop	 applications	 able	 to	
transport	synchronised	multimedia	and	data	over	the	internet	in	real-time.	

1.2.2 Screencast	

A	screencast	 is	a	multimedia	composition	typically	comprised	of	a	feed	from	the	computer	screen,	
accompanied	by	an	audio	narration.	The	screencast	may	also	include	a	camera	feed	('talking	head')	
and	system	audio	(see	Figure	1:	Screencast	layout	sample).	

Screencasts	are	particularly	suitable	for	presenting	content	that	requires	excellent	representation	of	
information	otherwise	difficult	 to	 capture	with	a	 video	 camera.	Hence,	 it	 is	 a	popular	 solution	 for	
capturing	 lectures	 centred	 around	 digital	 content,	 such	 as	 delivered	 by	 overhead	 projectors	 (e.g.	
slide-based)	and	 interactive	whiteboards.	Many	educators	 (and	 indeed	students)	also	make	use	of	
screencasts	 to	 create	 educational	 content	 outside	 of	 the	 classroom	 (e.g.	 step-by-step	 tutorials	 or	
student	assignments).	

Traditional	 screencast	 solutions	 run	 as	 native	 applications,	 developed	 for	 dedicated	 operating	
systems	 (OS).	 A	 WebRTC-based	 alternative,	 on	 the	 other	 hand,	 is	 OS-agnostic	 and	 may	 run	 in	
modern	web	browsers	on	any	system.	



Introduction	

SA8T2	Internal	Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC	

3	

	

Figure	1:	Screencast	layout	sample	

1.3 Technology	scout	objective	

Although	WebRTC	enjoys	advanced	support	in	many	major	web	browsers,	the	standard	is	still	a	work	
in	progress.	Further,	many	components	or	extensions	of	the	standard	are	in	their	infancy.	

This	 technology	 scout	 set	 out	 to	 investigate	 WebRTCs	 current	 state	 of	 maturity	 to	 support	 a	
browser-based	screencast	application	to	achieve	the	following:	

-	Acquire	the	following	media	sources	from	the	host	system:	
				-	Screen	
				-	Video	(e.g.	web	camera)	
				-	Microphone	
-	Record	these	sources	to	a	flat	video	file	
-	Support	live	stream	broadcast	(with	recording)	as	well	as	'off	line'	(e.g.	in	office)	production	
-	No	web	browser	extensions/plugins	required!	

	
The	 very	 name	 "WebRTC",	 Web	 Real-Time	 Communications,	 implies	 at	 least	 two	 endpoints	
performing	 synchronous	 communication.	 In	 the	 scope	 of	 this	 technology	 scout,	 we	 also	 want	 to	
gauge	 WebRTC/HTML5	 standards	 to	 allow	 for	 the	 production	 of	 screencasts	 without	 necessarily	
broadcasting	the	content	live	others.	

An	absolute	requirement	of	the	solution	is	that	 it	will	 function	without	browser	extensions/plugins	
of	any	kind.	Dependencies	on	such	extensions	take	away	the	desired	"nothing	to	install"	benefit	as	
well	as	interoperability	across	browsers	(extensions	are	not	browser-agnostic).	

	



Introduction	

SA8T2	Internal	Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC	

4	

1.4 Rationale	

Keywords	associated	with	WebRTC	 include	"open",	"free",	"standard",	"accessible",	and	"platform-
independent".	 It	 is	 supported	and	given	 tremendous	momentum	by	 superpowers	of	 the	web	 (e.g.	
Google,	Mozilla,	Microsoft	and	Opera),	with	underlying	protocols	being	developed	jointly	at	the	W3C	
and	IETF.	WebRTC	is	thus	an	emerging	technology	that	will	present	to	the	R&E	community	a	new	set	
of	standards	and	applications	for	real-time	communication	and	collaboration.	

Lecture	streaming	and	recording	 is	a	growing	market	 that	does	not	seem	to	coherently	 follow	any	
standards;	not	with	capture	agents/clients,	not	with	metadata,	not	with	content	 formats	 (codecs),	
not	 with	 delivery	 and	 not	 with	 playback.	 Screencasts	 provide	 an	 interesting	 case	 because,	 if	
following	certain	base-standards,	not	only	can	 they	be	made	as	 simple	or	complex	as	desired,	but	
they	may	also	evolve	over	time	without	leaving	"legacy"	content	behind.		

Screencasts	 utilising	 WebRTC	 technology	 can	 provide	 standards-based	 live	 streaming	 (and	
interaction)	 out	 of	 the	 box,	 as	 well	 as	 facilitate	 "off-line"	 recordings	 (e.g.	 sans	 the	 live	 stream).	
Audience	(students)	may	participate	live	or	consume	recorded	content	on	any	platform/OS	without	
any	extra	(potentially	licensed)	software/extension	installations.		

Web-based	 apps	 need	 no	 rollout,	 are	 easier	 to	 update,	 simplify	 the	 user	 experience	 (require	 no	
action	from	the	end	user)	and	are	platform	agnostic.	The	underlying	technology	makes	 it	easier	to	
extend/alter	 functionalities,	 and	 the	 service	 can	 be	 moulded	 to	 suit	 the	 particular	
workflows/policies/requirements	of	any	organisation.	



		

SA8T2	Internal	DeliverableSA8T2	Internal	
Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC	

5	

2 Technology	Overview	

A	screencast	application	requires	access	to	the	following	media	sources	on	the	host	system,	as	well	
as	the	capacity	to	stream	and	record	these:	

• Microphone	
• Video	camera	
• Screen	(desktop)	
	
The	following	WebRTC	specifications	are	pertinent	to	achieve	the	above:	Media Capture and 
Streams,	Screen Capture	and	MediaStream Recording.	This	section	takes	a	closer	look	
at	each	of	these	specifications.	

2.1 Media	Capture	and	Streams	

• Editor's	Draft:	http://w3c.github.io/mediacapture-main/	
• Demos	and	code:	https://webrtc.github.io/samples/	

	
With	the	exception	of	Apple's	Safari,	all	modern	web	browsers	(e.g.	Google	Chrome,	Mozilla	Firefox,	
Microsoft	Edge	and	Opera)	 implement	W3Cs	proposals	 in	 the	Media Capture and Streams	
specification.	This	specification	defines	a	set	of	JavaScript	APIs,	specifically	the	getUserMedia	API,	
that	can	request	access	to	local	multimedia	devices,	such	as	microphones	and	video	cameras.	
	
Browser	 implementations	of	these	APIs	are	advanced	and	well	documented,	with	numerous	open-
source	demonstrations	available	for	app	developers.	

2.2 Screen	Capture	

• Editor's	Draft:	http://w3c.github.io/mediacapture-screen-share/	
• Relevant	article:	https://webrtcstandards.info/webrtc-screen-sharing-discussion-in-w3c/	
• Chrome	Extension:	https://developer.chrome.com/extensions/desktopCapture	

	
Access	 to	 the	 screen	 is	 provided	 by	 an	 extension	 to	 the	 Media Capture and Streams	
specification,	Screen Capture,	that	enables	the	acquisition	of	content	from	a	user’s	display.	The	
draft	 refers	 to	 the	different	 types	of	 screen-based	 content	 as	 "display	 surfaces"	 and	groups	 these	
into	the	following	four	categories:	
	



Technology	Overview	

SA8T2	Internal	Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC	

6	

	
1.	 Monitor	 —	 a	 display	 surface	 that	 represents	 a	 physical	 display.	 Some	 systems	 have	 multiple	
monitors,	 which	 can	 be	 identified	 separately.	 Multiple	 monitors	 might	 also	 be	 aggregated	 into	 a	
single	logical	monitor.	
	
2.	Window	—	a	single	contiguous	surface	that	is	used	by	a	single	application.	
	
3.	 Application	—	might	 have	 several	windows	 available	 to	 it,	 and	 those	 can	be	 aggregated	 into	 a	
single	application	surface,	representing	all	the	windows	available	to	that	application.	
	
4.	Browser	—	the	rendered	form	of	a	single	document	(i.e.	a	single	tab).	Not	strictly	limited	to	HTML	
documents.	
	
The	 proposed	 specification	 defines	 that	 the	 capture	 of	 displayed	 media	 be	 enabled	 through	 the	
getDisplayMedia	 API,	 which	 to	 the	 application	 developer	 will	 closely	 resemble	 the	
aforementioned	getUserMedia	API	used	for	accessing	audio	and	video.	The	draft	can	be	traced	
back	to	2014,	but	have	undergone	a	number	of	revisions	and	changes	since.	
	
While	 the	 Screen	Capture	 specification	promises	 a	 complete	 set	of	 functionalities	 required	by	our	
proposed	 service,	 it	 is	 presently	 not	 implemented	 by	 any	 browser.	 There	 is	 also	 very	 little	
information	to	be	found	from	browser	vendors	around	this	particular	specification.	
	
Some	experimental	implementations	of	screen	capture	have,	at	some	point	or	other,	been	available	
in	some	browsers,	but	these	have	long	since	been	revoked	due	to	security	concerns:	
	

...the	security	implications	of	this	functionality	are	much	harder	for	users	to	
intuitively	analyze	than	for	camera	and	microphone	access.	

	
—	Security	Considerations	for	WebRTC	(http://tools.ietf.org/html/draft-ietf-rtcweb-security-07#section-4.1.1)	

	
Indeed,	the	Screen Capture	specification	itself	devotes	a	whole	chapter	to	debate	the	potential	
risks	associated	with	users	(inadvertently)	sharing	their	screen	content:	
	

The	immediate	and	obvious	risk	is	that	users	inadvertently	share	content	that	
they	did	not	wish	to	share,	or	might	not	have	realized	would	be	shared.	

	
—	w3c.github.io/mediacapture-screen-share/#security-and-permissions	

	
Little	is	known	about	when	browser	vendors	will	begin	to	offer	an	implementation	of	the	Screen 
Capture	 specification.	 Presently,	 the	 only	 way	 to	 access	 the	 screen	 is	 by	 use	 of	 purpose-built	
browser	extensions	(e.g.	 for	Chrome	and	Firefox)	or	to	manually	configure	browser	flags	to	enable	
screen	 sharing	 and	 add	 the	 hosting	 domain	 to	 a	 whitelist	 (Firefox	 only).	 This	 fact	 puts	 serious	
limitations	 to	 the	 proposed	 service,	 since	 such	 extensions	must	 be	 built	 and	maintained	 for	 each	
individual	browser	(and	thus	kills	the	ideal	of	a	no-install,	no-fuss	and	easy	to	use	service	for	the	end	
user).	 Development	 of	 browser	 extensions	 also	 require	 that	 all	 browser	 vendors	 provide	 a	
supporting	API	to	allow	access	to	a	screen	capture	service	(something	that	is	lacking	today).	
	



Technology	Overview	

SA8T2	Internal	Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC	

7	

2.3 MediaStream	Recording	

• Editor's	Draft:	http://w3c.github.io/mediacapture-record/MediaRecorder.html	
• Demo	and	code:	https://webrtc.github.io/samples/src/content/getusermedia/record/	
	
An	 extension	 to	 the	 Media Capture and Streams	 specification	 that	 is	 enjoying	 browser	
implementation	 (Chrome,	 Firefox	 and	 Opera	 —	 Edge	 is	 ‘under	 consideration’)	 is	 the	 W3C	
MediaStream Recording	specification.		

The	implementations	are,	however,	very	fresh	(e.g.	Chrome	only	added	support	for	audio	recording	
in	 version	 49,	 Mar.	 2016)	 and	 buggy	 (e.g.	 duration	 limits,	 frame	 drops/buffer	 issues,	 mime	 type	
errors,	periodic	blinking,	…).	There	are	also	a	number	of	limitations	still	pertaining	to	control/tuning	
of	recording	parameters	and	codecs	(e.g.	sample	rate,	bitrate,	only	webm,	…).		

Shortcomings	 and	 issues	 aside,	 the	 standard	 implementation	 is	 progressing	 at	 a	 rapid	pace	 and	 is	
already	suitable	for	preliminary	development.	

	

	

	

	

	



		

SA8T2	Internal	DeliverableSA8T2	Internal	
Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC	

8	

3 Implications	of	WebRTC	in	lecture	streaming	
and	recording	

We	are	witnessing	a	new	era	of	teaching	and	 learning	unfold,	as	a	growing	number	of	educational	
providers	are	making	online	classrooms	and	lecture	streaming/recording	mainstream	(perhaps	best	
illustrated	by	the	rise	of	Massive	Open	Online	Courses	(MOOC),	Open	Universities	and	the	like).	

Lecture	 streaming	 and	 recording	 is	 still	 an	 emerging	market,	 with	 commercial	 vendors	 and	 open	
source	projects	still	working	hard	to	make	their	systems	work	well	with	the	many	facets	demanded	
from	teaching	and	learning.	From	a	production	perspective,	systems	range	from	the	fully	automated	
that	run	on	expensive	proprietary	hardware	and	demand	little	from	the	lecturer	(but	more	from	the	
administrator),	to	the	more	affordable	clients	that	are	run	and	operated	by	the	lecturer	on	standard	
computer/mobile	 equipment.	 Any	 solution	 will,	 however,	 need	 to	 facilitate	 content	 production,	
publication	and	consumption	to	some	extent.	

Typical	production	considerations	include:	

• platforms,	 hardware,	 automation,	 input	 (media),	 processing	 (conversions),	 metadata,	
access,	updates/rollouts	and	storage	(and	management).		

	
Typical	consumption	(and	publication)	considerations	include:	

• formats	(codecs,	plugins),	access,	platform	support,	seek	&	search	(metadata),	playback	and	
user	experience.	

3.1 Two	different	views	for	storing	lecture	recordings	

How,	 where	 and	 for	 how	 long	 recorded	 material	 should	 be	 stored	 is	 often	 subject	 to	 financial,	
philosophical	and	practical	arguments.	The	"pragmatic"	view	is	to	treat	recorded	lectures	as	"fresh	
goods"	 that	 may	 be	 thrown	 away	 at	 the	 end	 of	 a	 semester/year.	 Another,	 and	 perhaps	 more	
"conservative",	view	considers	 the	many	potential	ways	a	 recorded	 lecture	may	be	of	value	 in	 the	
future,	thus	demanding	that	nothing	should	ever	be	discarded	for	this	reason.	These	opposing	views	
demand	different	approaches	and	requirements	from	a	capturing	solution.		

The	pragmatic	view	has	many	luxuries	not	afforded	by	the	conservative.	While	the	former	typically	
enjoys	 lower	 cost	 of	 entry/storage/delivery	 and	 may	 avoid	 vendor	 lock-ins	 (both	 in	 terms	 of	
contracts	and	proprietary	content	formats),	the	latter	must	put	serious	consideration	into	long-term	



Implications	of	WebRTC	in	lecture	streaming	and	recording	

SA8T2	Internal	Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC	

9	

conservation	of	digital	content.	Even	today,	many	systems	still	rely	on	browser	plugins	(e.g.	Flash	or	
Silverlight,	 and	 thus	 dedicated	 apps	 for	 mobile	 devices)	 for	 video	 playback	 and	 to	 support	 extra	
features	 (e.g.	 inbuilt	 quizzing,	bookmarks,	 subtitles,	 etc.).	A	 lecture	 recording	 composition	may	be	
incredible	 complex,	 composed	 by	 one	 or	 more	 videos	 (and	 separate	 audio	 tracks),	 hundreds	 of	
pictures	(e.g.	for	thumbnails	or	high-res	screen	grabs),	subtitles	with	time	codes	and	supporting	files	
to	 keep	 audio/video/thumbnails/quiz/other	 in	 sync.	 The	 conservation	 of	 such	 content,	 and	 its	
interactive	nature,	becomes	a	challenge	as	technologies	are	being	replaced	and	made	redundant.	

Nonetheless,	 it	 is	 not	 possible	 to	 deem	one	 view	 better	 or	more	 suitable	 than	 the	 other	without	
knowing	more	about	the	context.		

3.2 WebRTC	implications	for	these	two	different	views	

A	WebRTC-based	solution	need	not	make	any	assumptions	about	pragmatism	or	conservatism	at	all.	
It	 could	 mainly	 concern	 itself	 with	 the	 production	 aspect,	 and	 hardly	 need	 to	 consider	 the	
management/publication-side.	The	reason	being	that	a	well	put	together,	open	and	standards-based	
web	application	for	screencast	production	may	be	extended	to	suit	any	dogmas	concerning	content	
management	and	distribution.	Extra	web-based	modules	could	provide	upload/publishing	features,	
e.g.	 to	social	video	platforms,	LMS,	cloud	storage	 (e.g.	Box,	OneDrive,	Google	Drive),	or	 indeed	an	
existing	 lecture	 capture	 system	 that	 supports	 import	 from	 external	 sources.	 Cloud	 storage	
integration	 would	 certainly	 add	 value	 to	 NRENs	 that	 offer	 these	 services	 to	 their	 communities.	
Likewise,	modules	for	basic	editing	features	(e.g.	trimming	of	start/endpoints)	could	also	be	added	
to	the	solution	if	needed.	
	
By	 decoupling	 production	 from	 media	 management,	 strategies	 are	 no	 longer	 dictated	 by	 the	
regulations	enforced	by	proprietary	(and	indeed	most	open)	solutions.	That	said,	we	are	not	blind	to	
the	fact	that	large-scale	fully	automated	systems	offer	features	that	eclipse	the	scope	of	this	scout.	
What	 we	 are	 proposing,	 however,	 is	 an	 end-user	 operated	 web-app	 limited	 to	
broadcasting/recording	(with	any	decoupled	publishing	extensions)	of	screencasts.	

3.3 Considerations	

Some	NREN	 communities	 offer	 cloud	 storage	 solutions	 for	 its	 users.	Many	 of	 these	 offer	 APIs	 for	
extending	 functionality	 and	 integrations.	 A	 web-based	 screencast	 application	 need	 not	 provide	 a	
media	management	system	or	its	own	publication	system,	but	rather,	via	APIs,	publish	to	such	cloud	
storage	solutions,	or,	indeed,	social	or	educational	video	platforms	(e.g.	YouTube/Vimeo/iTunes	U),	
local	storage,	network	storage,	LMS,	CMS,	MOOCs,	other	capture	systems,	and	so	on.		

Federated	identity	and	single	sign-on	(SSO)	are	central	in	the	R&E	community,	but	is	at	best	difficult	
achieve	 with	 traditional	 desktop	 software.	 A	 web-app	 for	 screencast	 production,	 however,	 can	
implement	 SSO	with	 ease	 to	 provide	 authentication,	 authorisation	 and	 access	 control.	 Benefits	 of	
account	 management	 are	 obvious,	 but	 in	 an	 increasingly	 connected	 world	 SSO	 also	 presents	 a	
number	of	opportunities	for	integrations	across	existing	and	future	services.	
	
Most	commercial	and	open	source	systems	produce	content	compositions	(e.g.	mix	of	audio,	video,	
screen,	 queue	 points,	 bookmarks,	 thumbnails,	 metadata,	 etc.)	 that	 may	 only	 be	 represented	 in	



Implications	of	WebRTC	in	lecture	streaming	and	recording	

SA8T2	Internal	Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC	

10	

dedicated,	 sometimes	 proprietary,	 players	 (developed	 in	 e.g.	 Flash/Silverlight).	 To	 maintain	 and	
manage	 legacy	content	 from	these	systems	can	present	a	challenge	as	 the	 technology	progresses.	
Many	 institutions	 may	 therefore	 feel	 “trapped”,	 with	 no	 other	 choice	 than	 to	 continue	 using	
outdated	solutions	in	order	to	protect	prior	investments	and	legacy	content.		WebRTC,	on	the	other	
hand,	 is	by	definition	guided	by	open	standards	 that	support	 future	proofing	 through	transfer	and	
transformation	of	legacy	content.		
	
	



		

SA8T2	Internal	DeliverableSA8T2	Internal	
Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC	

11	

4 Lessons	Learned	

This	technology	scout	somewhat	overlaps	a	similar	research	at	UNINETT	by	the	author	in	early	2015.	
Looking	at	my	notes	from	one	year	ago,	the	WebRTC	standards	and	browser	implementations	have	
undoubtedly	made	progress,	but	not	sufficiently	so	to	realise	the	proposed	service.		

Online	 documentation	 (even	 from	 browser	 vendors),	 articles	 and	 demonstrations	 are	 quickly	
outdated	and	becomes	not	only	irrelevant,	but	in	some	cases	misleading	(e.g.	demo	code,	although	
fully	 functional,	may	 be	 using	 deprecated	 APIs).	 	 Detailed	 information	 about	 the	 latest	 standards	
implementations	is	often	difficult	to	find	or	poorly	documented.	Due	to	the	freshness	of	some	APIs	
(e.g.	MediaStream	Recording),	there	are	few	implementations	and	use,	making	the	technology	less	
stable	and	prone	to	bugs.	

It	is	important	to	be	aware	that	standards,	APIs	and	implementations	(demos	and	browser	support)	
may	well	have	changed	drastically	overnight.	To	 illustrate;	 in	 late	2015,	with	the	release	of	Google	
Chrome	47,	the	web	browser	started	to	actively	block	WebRTCs	getUserMedia	(as	well	as	other	
technologies,	 such	 as	 geolocation	 and	 screen	 sharing)	 not	 served	 from	 a	 secure	 (HTTPs)	 site	 or	
localhost	 by	default.	 This	 change	has	 caused	 a	number	of	WebRTC-related	demos	 and	 services	 to	
stop	 working	 for	 Chrome-users	 with	 an	 up-to-date	 browser	 (http://www.tokbox.com/blog/the-
impact-of-googles-new-chrome-security-policy-on-webrtc/),	and	observed	 frequently	 in	working	on	
this	tech	scout.		

A	web	browser's	support	of	any	WebRTC	component	may	only	be	partial	and	behave	differently	to	
other	web	browsers.	E.g.	one	version	ago,	Chrome's	implementation	of	the	MediaStream	Recording	
API	only	supported	video	recording	(audio	was	left	out).		



		

SA8T2	Internal	Deliverable	
Technology	Scout:	Stream	and	record	lectures	
with	WebRTC	

12	

5 Conclusions	

A	WebRTC/HTML5-based	screencast	service	would	offer	a	number	of	advantages	to	the	organisation	
and	 its	 users.	 Attention	 to	 open	 standards,	which	 is	 central	 to	WebRTCs	 specifications,	 facilitates	
ease	of	implementation,	great	opportunities	for	integration,	future	proofing,	user-friendliness,	broad	
platform	support	and	so	on.	
	
The	WebRTC	APIs	required	to	realise	a	screencast	application	as	per	our	definition	are,	however,	not	
yet	sufficiently	implemented	in	any	web	browser.	The	technology	scout	has	nevertheless	established	
that	all	required	building	blocks	are	available,	at	the	very	least	as	specification	drafts.		
	
1. Access	to	microphone	and	camera	feeds  	

Audio	and	video	capture	provided	by	the	Media Capture and Streams	specification,	
which	 defines	 the	MediaStream	 API,	 enjoys	 broad	 and	 stable	 implementation	 in	many	
modern	web	browsers.	It	is	an	essential	interface	to	enable	audio	and	video	conferences.	

2. Recording	of	streams  	

The	MediaStream Recording	specification,	which	defines	the	MediaRecorder	API,	
permits	 recording	of	audio/video	and	 is	 already	 implemented	and	 functional	 in	 some	web	
browsers.	These	implementations	are	very	recent,	though,	with	Chrome	first	supporting	the	
API	in	version	49	(released	in	March	2016).	Demonstration	tests	confirm	that	recording	may	
now	 be	 achieved,	 though	 lacking	 in	 codec	 (variety)	 support	 and	 the	 implementations	 are	
buggy/inconsistent	between	browsers.	

3. Access	to	screen	(desktop)	feed  	

The	 real	 showstopper	 is	 screen	 capture.	 The	 W3C	 is	 working	 on	 extension	 to	 the	
MediaStream	 API	 (getUserMedia),	 the	Screen Capture	 API	 (getDisplayMedia),	
that	 "enables	 the	 acquisition	 of	 a	 user's	 display,	 or	 part	 thereof,	 in	 the	 form	 of	 a	 video	
stream".	The	API	is,	however,	not	yet	fully	implemented	in	any	browser.	In	order	to	achieve	
screen	 capture,	 a	 browser-specific	 add-on/extension	 (or	 a	 manual	 override	 of	 browser	
configurations	 in	Firefox)	must	therefore	be	developed	which	the	end	users	would	have	to	
install	in	order	to	use	the	service.		

Early	 browser	 previews	 (alpha/beta	 versions)	 and	 rapid	 release	 cycles	 suggest,	 however,	 that	 a	
WebRTC-based	screencast	service	may	be	realised,	perhaps	 in	the	near	future.	The	main	source	of	
uncertainty	 at	 present	 is	 the	Screen Capture	 API,	which	 represents	 a	 core	 requirement	 for	 a	
screencast	application.	No	browser	vendors	make	any	mention	of	implementing	this	proposal	as	of	
yet.		


