
	

27-04-2016	

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	

SA8T2	Internal	Deliverable	

Contractual	Date:	 30-04-2016	
Actual	Date:	 27-04-2016	
Grant	Agreement	No.:	 691567	
Activity:	 12/SA8	
Task	Item:	 Task	2	–	WebRTC	
Nature	of	Deliverable:	 R	(Report)	
Dissemination	Level:	 PU	(Public)	
Lead	Partner:	 NORDUnet	(UNINETT)	
Authors:	 Stefan	Otto	(UNINETT)	

	
©	GEANT	Limited	on	behalf	of	the	GN4	Phase	1	project.	
The	research	leading	to	these	results	has	received	funding	from	the	European	Union’s	Horizon	2020	research	and	
innovation	programme	under	Grant	Agreement	No.	691567	(GN4-1).	

Abstract	
This	 document	 reports	 on	 results	 and	 findings	 from	 a	 technical	 investigation	 into	 a	 WebRTC-to-SIP	 Gateway.	 The	
technology	scout	was	conducted	by	the	Service	Activity	8	 (SA8,	Real	Time	Communication	and	Media),	Task	2	(WebRTC)	
team	as	part	of	the	GN4-1	project.	This	report	should,	as	such,	be	read	in	context	of	the	related	work	produced	by	GN4-1	
SA8-T2.	



	

Deliverable	SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway		
Document	Code:		

i	

Table	of	Contents	

1	 Introduction	 3	
1.1	 About	this	document	 3	

1.1.1	 Target	audience	 3	
1.1.2	 Responsible	task	members	 3	

1.2	 Background	 3	
1.3	 Rationale	 5	
1.4	 Tech	scout	objective	and	methodology	 5	

2	 Challenges	 6	
2.1	 Transfer	Protocol	 6	
2.2	 Codecs	 6	
2.3	 Encryption	 6	
2.4	 ICE	 7	

3	 Possible	candidates	 8	
3.1	 FreeSWITCH	 8	
3.2	 Doubango	webrtc2sip	 9	
3.3	 Janus	 9	
3.4	 Kamailio	+	rtpengine	 9	

4	 Solution	Overview	 10	

5	 Limitations	 12	

6	 Performance	and	Scalability	 13	

7	 Security	considerations	 14	

8	 Conclusions	 15	

Appendix	A	 Setup	WebRTC2SIP-gateway	 16	
A.1	 Get	certificates	 16	
A.2	 Get	configuration	files	 16	
A.3	 Install	rtpengine	 17	



	Introduction	

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 ii	

A.4	 Install	IPTables	firewall	(optional)	 17	
A.5	 Install	Kamailio	 17	
A.6	 Install	WebRTC	client	 18	
A.7	 Install	TURN	server	 18	
A.8	 Testing	 18	

	

Table	of	Figures		 	

Figure	1:	WebRTC	Signalling	and	media	 4	
Figure	2:	SIP	Signalling	and	media	 4	
Figure	3:	WebRTC2SIP	gateway	 8	
Figure	4:	WebRTC2SIP-Gateway	overview	 10	

	

	
	
	
	
	
	 	
	
	



		

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 3	

1 Introduction	

1.1 About	this	document	

This	 document	 reports	 on	 results	 and	 findings	 from	 a	 technology	 scout	 into	 a	 WebRTC-to-SIP	
Gateway	conducted	by	 the	Service	Activity	8	 (SA8),	 Task	2	 team	of	 the	GN4-1	project.	 This	 report	
should,	as	such,	be	read	in	context	of	the	related	work	produced	by	GN4-1	SA8-T2.	

The	WebRTC	task	ran	from	1	May	2015	to	30	April	2016.	

1.1.1 Target	audience	

This	 document	 targets	 technical	 management	 and	 specialists,	 in	 particular	 those	 working	 in	 the	
fields	of	real	time	communications,	eLearning	and	eResearch.	

1.1.2 Responsible	task	members	

Stefan	 Otto	 (UNINETT)	 had	 the	 lead	 on	 this	 tech	 scout.	 Jan	Meijer	 (UNINETT)	 and	 Simon	 Skrødal	
(UNINETT)	were	the	document	editors.	

1.2 Background	

The	Session	Initiation	Protocol	(SIP)	is	a	system	of	rules	that	governs	the	signalling	and	controlling	of	
multimedia	communication	sessions.	This	technology	scout	investigates	how	the	WebRTC	ecosystem	
may	integrate	and	support	legacy	SIP	equipment.		

There	are	a	number	of	scenarios	where	it	would	make	sense	to	enable	audio/video	communication	
between	 legacy	 SIP	 clients	 and	web	browsers.	While	 participation	 in	 a	 classical	 SIP	 video	meeting	
with	 a	 WebRTC-enabled	 browser	 is	 already	 possible,	 the	 other	 way	 around	 is	 not.	 You	 can	 not	
participate	 in	 a	WebRTC	 browser	meeting	 using	 a	 SIP	 client.	 This	 will	 never	 work	 via	 a	 universal	
gateway	because	there	 is	no	standardized	signalling	protocol	 in	WebRTC,	meaning	 that	you	would	
need	to	implement	your	own	gateway	for	each	WebRTC-service.		

Other,	more	feasible	and	value-adding	use	cases	include:	



	Introduction	

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 4	

• easy	 to	 integrate	 call	 buttons	 where	 web	 page	 visitors	 can	 ring	 to	 your	 organization's	
internal	telephony	network	by	pressing	a	button	in	their	browser	

• participate	with	a	browser	in	a	classic	audio	only	conference	
• build	Point-of-Presence	systems	which	can	interact	both	with	classical	telephony	and	legacy	

video	systems		
• wherever	you	want	to	connect	a	browser	to	telephony	or	legacy	SIP	video	systems	

	
WebRTC	and	SIP	media	sessions	have	many	similarities	(see	Figure	1:	WebRTC	Signalling	and	media	
and	 Figure	 2:	 SIP	 Signalling	 and	 media).	 Since	 WebRTC	 standardization	 began,	 there	 have	 been	
ongoing	 discussions	 and	 efforts	 towards	 maintaining	 compatibility	 with	 classic	 SIP	 audio/video	
equipment.	For	this	reason,	there	are	no	specific	signalling	protocols	defined	for	WebRTC,	meaning	
you	can	use	SIP	if	you	want.	Further,	the	Session	Description	Protocol	(SDP)	is	used	by	SIP	as	well	as	
WebRTC	to	describe	media	session	and	communication	parameters,	such	as	key-fingerprints	and	IP-
address	candidates.	 In	WebRTC,	this	SDP	"blob"	has	to	be	sent	with	the	signalling	protocol	of	your	
choice.	Hence,	there	are	several	similarities	worth	 investigating	further	 in	order	to	bridge	WebRTC	
and	SIP.	

	

	

Figure	1:	WebRTC	Signalling	and	media	

	

	

Figure	2:	SIP	Signalling	and	media	



	Introduction	

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 5	

1.3 Rationale	

There	is	a	large	installed	base	of	SIP	infrastructure	in	the	R&E	community.	Effectively	every	Unified	
Communication	installation	adds	to	this.	That	makes	it	very	interesting	to	investigate	how	WebRTC	
can	be	used	to	add	value	to	this	installed	base,	and	how	the	installed	base	can	be	used	to	facilitate	
WebRTC	adoption.	

1.4 Tech	scout	objective	and	methodology	

The	objective	for	this	tech	scout	was	to	investigate	how	the	WebRTC	ecosystem	may	integrate	and	
support	legacy	SIP	equipment	and	what	type	of	value-adding	use	cases	could	be	addressed	using	the	
solution(s)	identified.	

The	concept	and	architecture	of	a	WebRTC2SIP	gateway	was	explored	upon	which	a	PoC	was	built	
using	open	source	components.	



		

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 6	

2 Challenges	

A	closer	look	identifies	a	number	of	issues	that	must	be	addressed.		

2.1 Transfer	Protocol	

SIP-clients	use	direct	TCP	or	UDP	to	transport	SIP	packets.	The	web	browser,	on	the	other	hand,	can	
only	communicate	using	HTTP/WebSocket.	Since	the	web	developer	cannot	make	the	web	browser	
send	 or	 receive	 SIP-messages	 to/from	 a	 specified	 IP-address/port,	 the	 transfer	 protocol	 must	 be	
converted.	 This	 may	 be	 achieved	 by	 using	 the	 WebSocket	 protocol	 as	 transport	 for	 SIP	 (see	
https://tools.ietf.org/html/rfc7118)	or	to	translate	to	SIP	on	the	WebRTC-signalling	server	and	send	
forwards.	

2.2 Codecs	

The	next	challenge	involves	the	video/audio	codec	negotiation.	Current	WebRTC-enabled	browsers	
(e.g.	Firefox/Chrome)	support	the	following	codecs:	

Video	—	VP8	 (MTI),	VP9	and	H264	 (MTI	 -	 supported	on	Firefox,	experimental	 support	 in	Chrome-
M50)	

Audio	—	opus	(MTI),	G.711	(MTI),	iSAC	and	G.722	

SIP	clients	usually	understand	several	codecs,	but	 if	 there	 is	no	single	match	 to	 the	ones	 from	the	
browser	they	will	not	be	able	to	talk	to	each	other.	A	gateway	could	decode	and	encode	the	streams	
to	 the	 supported	 codec,	 but	 this	 would	 add	 significant	 CPU	 workload,	 additional	 latency	 and	
compatibility	issues.		

2.3 Encryption	

For	WebRTC	connections	it	is	mandatory	to	use	DTLS	to	establish	a	secure	SRTP	connection.	Only	a	
few	legacy	systems	support	this.	



	Challenges	

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 7	

2.4 ICE	

	
In	order	to	establish	connections	through	firewalls	and	NAT,	routers,	WebRTC	clients	and	SIP-clients	
use	ICE	(Interactive	Connectivity	Establishment,	see	https://tools.ietf.org/html/rfc5245).	There	exist	
several	improving	extensions,	e.g.	TCP	Candidates	with	ICE	(https://tools.ietf.org/html/rfc6544)	and	
the	 Trickle	 ICE	 draft	 (https://tools.ietf.org/html/draft-ietf-mmusic-trickle-ice-02),	 which	 legacy	 SIP	
equipment	usually	does	not	know	about,	but	WebRTC	clients	do.	

Other	 issues	 include	 RTP/RTCP	muxing	 into	 one	 UDP	 port	 (http://tools.ietf.org/html/rfc5761)	 and	
bundling	 several	 media	 streams	 in	 one	 address:port	 combination	 (BUNDLE	 draft	 —	
https://tools.ietf.org/html/draft-ietf-mmusic-sdp-bundle-negotiation-27),	 used	 by	 WebRTC-clients	
and	preventing	direct	communication	with	SIP	legacy	clients.	



		

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 8	

3 Possible	candidates	

A	possible	gateway	architecture	is	suggested	by	Figure	3:	WebRTC2SIP	gateway.	

	

	

Figure	3:	WebRTC2SIP	gateway	

The	gateway	consists	of	a	SIP-proxy	and	an	RTP-proxy.	The	SIP-proxy	accepts	SIP	packets	via	the	web	
client's	WebSocket.	SDP	is	translated	(delete,	generate,	replace	ICE	candidates,	BUNDLE	lines,	DTLS	
fingerprints,	 ...)	 and	 the	 RTP-proxy	 then	 bridges	 media	 traffic	 (IPv4/IPv6,	 SRTP/RTP,	 RTP/RTCP	
multiplexing/demultiplexing,	BUNDLE/unBUNDLE	media	streams,	...).	

Since	the	technology	scout	is	restricted	to	consider	open	source	solutions	only,	several	commercial	
solutions	 were	 disregarded.	 However,	 for	 the	 sake	 of	 completeness,	 we	 want	 to	 mention	 Acano	
(https://www.acano.com)	and	Pexip	(https://www.pexip.com),	which	include	WebRTC2SIP	gateway	
functionality	in	their	products.		

3.1 FreeSWITCH	

While	FreeSWITCH	(https://freeswitch.org)looks	 like	a	promising	candidate	worth	testing,	we	were	
unable	to	do	so	due	to	time	constraints.		

It	 features	 a	 scalable	 telephony	 platform	 designed	 to	 route	 and	 interconnect	 popular	
communication	 protocols	 using	 audio,	 video,	 text	 or	 any	 other	 form	 of	 media,	 support	
communication	 technologies	such	as	Skype,	SIP,	H.323	and	WebRTC.	FreeSWITCH	can	perform	full	
video	transcoding	and	MCU	functionality	using	its	conferencing	module.		

Web-browser SIP
UA

Gateway

SIP-Proxy

RTP-proxy

Control commands

w
s
s
:4

4
3

5
0

6
0wss:SIP/SDP tcp/udp:SIP/SDP

U
D

P
ra

n
g

e

udp:DTLS/ICE/SRTP udp:RTP/SRTPU
D

P
ra

n
g

e



	Possible	candidates	

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 9	

3.2 Doubango	webrtc2sip	

Doubango	Telecom	is	a	young	telecom	company	located	in	France,	with	a	big	focus	on	open	source	
solutions	 in	 IMS/SIP	 and	 WebRTC	 area.	 SIPml5,	 a	 browser	 JavaScript	 SIP	 library,	 is	 provided	 by	
Doubango	Telecom.		

Their	Doubango	webrtc2sip	media	gateway	 (https://www.doubango.org/webrtc2sip/)	consists	of	4	
modules	(SIP	Proxy,	RTCWeb	Breaker,	Media	Coder,	Click-to-Call)	following	the	same	philosophy	as	
described	 in	 this	 document.	Additionally,	 it	 features	 audio/video	 transcoding	 abilities.	 In	 our	 tests	
one	year	ago	we	experienced	the	solution	as	slightly	unstable.	There	are	no	binary	packages,	so	you	
have	 to	build	everything	on	your	own.	After	updating	openSSL	due	 to	security	 issues,	we	were	no	
longer	able	to	build	it	and	thus	ended	our	testing	of	webrtc2sip	at	that	point.	

3.3 Janus		

The	 Italian	 company	 Meetecho,	 located	 in	 Naples,	 provides	 an	 open	 source	 general	 purpose	
WebRTC	 Gateway	 called	 Janus	 (https://janus.conf.meetecho.com).	 Janus	 consists	 of	 a	 small	
footprint	core,	which	can	be	extended/customized	with	a	number	of	plugins.	There	are	already	a	few	
plugins	 available,	 e.g.	 audiobridge,	 echotest,	 recordplay,	 SIP,	 streaming,	 videocall,	 videoroom	 and	
voicemail.	The	SIP	plugin	enables	peers	to	register	through	Janus	to	a	SIP	server	and	call	in	and	out.	
The	functionality	is	marked	as	unstable	and	need	further	testing	-	for	now	tested	successfully	audio	
only.		

The	SIP	plugin	is	based	on	Sofia	SIP	(http://sofia-sip.sourceforge.net).	No	documentation	was	found	
in	regard	to	SDP	translating	between	legacy	SIP	equipment	and	WebRTC.		

3.4 Kamailio	+	rtpengine	

The	author	of	this	document	is	part	of	the	Norwegian	real-time	group	at	UNINETT,	and	we	built	a	SIP	
infrastructure	based	on	the	solid	SIP	router	Kamailio	(https://www.kamailio.org).	It	therefore	made	
sense	to	focus	our	attention	on	a	SIP-proxy	solution	based	on	Kamailio.	



	Solution	Overview	

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 10	

4 Solution	Overview	

	

Figure	4:	WebRTC2SIP-Gateway	overview	

The	 implemented	 solution	 utilizes	 Kamailio	 as	 the	 SIP-proxy	 and	 Sipwise	 rtpengine	
(https://github.com/sipwise/rtpengine)	 as	 the	 RTP-proxy.	 Kamailio	 controls	 rtpengine	 with	 the	
integrated	 rtpengine	 module	 to	 facilitate	 the	 following:	 Kamailio	 passes	 a	 received	 SDP	 body	 to	
rtpengine	à	rtpengine	rewrites	the	body	and	returns	it	à	Kamailio	forwards	the	rewritten	body.	

This	 flow	 guarantees	 that	 each	 SIP-client	 (WebRTC	 SIP.js	 clients	 as	 well)	 gets	 only	 ICE	 candidates	
from	 rtpengine.	 In	 result	 RTP	 traffic	 will	 flow	 via	 rtpengine.	 Additionally,	 rtpengine	 takes	 care	 of	
BUNDLEd	media	 and	muxed	RTP/RTCP	 channels	 and	 rewrites	 these	 lines	 in	 the	 SDP	body	as	well.	
Hence,	 rtpengine	 effectively	 talks	 to	 each	 client	 side	 and	 translates	 in	 the	 middle	 (this	 does	 not	
include	media	transcoding).	

The	web	server	is	the	entry	point	for	the	web	browser	and	its	naming	should	be	user	friendly	(e.g.	
call-the-ancient-world.net).	 Running	 the	 HTML/Javascript-code	 from	 the	 web	 server	 turns	 the	
browser	into	a	WebRTC	SIP	client	that	registers	on	Kamailio.	The	client	is	then	callable	via	a	SIP-URI	
world-wide	or	can	place	its	own	calls.	In	this	example	configuration,	the	SIP-URI	is	websip@gateway-
domain.no	

Should	the	WebRTC	client	be	unable	to	connect	directly	to	rtpengine	it	will	receive	support	from	the	
TURN-server,	which	listens	on	TCP/TLS	port	443	and	forwards	the	media	traffic	to	rtpengine	via	UDP.	
This	is	needed	to	pass	restrictive	firewalls	on	the	client	side.	rtpengine	does	not	support	RTP	media	
over	TCP	for	now	—	if	this	will	be	the	case	in	the	(near)	future,	there	will	no	longer	be	a	need	for	a	
TURN	server.	



	Solution	Overview	

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 11	

	
All	 components	 could	 be	 located	 on	 the	 same	 server,	 but	 in	 order	 to	 get	 listening	 on	 port	 443	
working	for	all	servers	for	firewall	traversal,	web-server,	Kamailio	and	TURN	server	each	will	need	an	
independent	IP-address.	



		

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 12	

5 Limitations	

rtpengine	is	just	a	proxy	so	there	is	no	media	transcoding.	SIP	clients	that	do	not	support	VP8/H264	
video	 codecs	 cannot	 be	 called	 or	 make	 calls.	 For	 now,	 only	 Firefox	 supports	 both	 video	 codecs,	
Chrome’s	 support	 for	 H264	 is	 not	 stable	 yet	 and	Microsoft	 Edge	 supports	 only	H264.	 As	 the	 IETF	
rtcweb-standardization	 group	 has	 decided	 to	make	 both	 video-codecs	mandatory	 to	 implement,	 I	
sooner	or	later	expect	support	for	both	codecs	in	all	WebRTC-enabled	browsers.	On	the	other	side,	
legacy	SIP	clients	usually	support	H264.	Some	modern	systems	and	software	clients	integrate	VP8	as	
well.	Acano,	for	example,	has	both	on	their	system.		



		

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 13	

6 Performance	and	Scalability		

Since	there	is	no	media	transcoding,	the	limiting	factor	would	be	the	network	bandwidth	for	media	
traffic	 over	 rtpengine.	 For	 large	 scale	 installations,	 rtpengine	 could	 be	 distributed	 over	 several	
instances	 on	 different	 locations.	 For	 a	 1	 Gigabit	 Ethernet	 interface	 there	 should	 be	 roughly	 100	
concurrent	calls	possible.	



		

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 14	

7 Security	considerations		

User	 credentials	 for	 the	 SIP-proxy	 and	 for	 the	 TURN	 server	 are	 publicly	 available	 from	 the	 web	
server.	Some	kind	of	authentication	should	therefore	be	established	in	front	of	the	web	server.	The	
TURN	server	should	be	protected	with	time-limited	secret-based	authentication	(see	A	REST	API	For	
Access	To	TURN	Services,	https://tools.ietf.org/html/draft-uberti-behave-turn-rest-00)	or	an	oAuth-
based	 client	 authorization,	 which	 is	 experimentally	 supported	 by	 the	 coTURN	 TURN	 server.	 To	
protect	Kamailio,	we	could	generate	user	accounts	dynamically	on	the	web	server	and	push	these	to	
Kamailio’s	user-database.	

Since	media	traffic	is	decrypted	in	the	Gateway,	it	is	possible	to	intercept	the	media	traffic	between	
the	gateway	and	 legacy	SIP	equipment.	Metadata	 interception	 is	possible	 if	you	 intercept	network	
traffic	to	and	from	the	gateway.	You	can	get	IP-address	based	call	information	(when,	how	long,	SIP	
header	information).		



		

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 15	

8 Conclusions	

We	have	 demonstrated	 that	 it	 is	 possible	 to	 build	 a	 scalable	WebRTC	 gateway	 from	open	 source	
components.	It	was	possible	to	get	stable	connections	to:	
	

- Alcatel-Lucent	PSTN-Gateway	(audio)	
- Asterisk	based	conference	system	(audio)	
- Several	softphones	such	as	Ekiga	or	Linphone	(audio	+	video)	
- Acano	video	meeting	(audio	+	video)	

	
The	solution	is	far	away	from	being	interoperable	with	the	whole	SIP	legacy	world,	but	it	is	a	starting	
point.	There	is	still	a	video	codec	problem,	which	hopefully	will	be	solved	soon.	There	are	also	issues	
with	several	SIP	systems	that	must	be	analyzed	further.	However,	 it	 is	already	possible	to	deliver	a	
stable	 "call	 button"	 solution,	 or	 an	 alternative	 video	 client,	 for	 calling	modern	 videoconferencing	
systems	like	Acano.		



		

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 16	

Appendix	A Setup	WebRTC2SIP-gateway	

This	section	describes	how	to	install	and	set	up	Kamailio	+	rtpengine	+	TURN	server	+	WebRTC	client	
to	enable	calling	between	WebRTC	clients	and	legacy	SIP	clients.	This	setup	will	bridge	SRTP-RTP	and	
ICE-nonICE	to	make	WebRTC	clients	(SIP.js)	able	to	call	legacy	SIP	clients.	

The	setup	is	pertinent	to	Debian	8	Jessie	for	all	servers.	

For	clients	to	avoid	firewalls	and	to	have	the	best	setup,	divide	the	servers	like	this:	

1. Server	—	Kamailio	+	rtpengine		
2. Server	—	TURN	(provide	TCP/UDP	connections	on	port	443	for	your	WebRTC	clients	to	

pass	restrictive	firewalls)	
3. Server	—	Web	server	to	serve	the	WebRTC	client	with	SIP.js	

	
The	configuration	 is	set	up	to	try	connecting	with	SIP	without	modification.	 If	 the	proxy	receives	a	
"488	Not	Supported	Here"	 from	 the	other	 side,	 it	will	 remove	SRTP	and	 ICE	 from	the	SDP	and	 try	
again	to	INVITE.	

A.1 Get	certificates	

For	the	needed	certificates,	 I	recommend	Let's	Encrypt	(https://letsencrypt.org).	They	will	work	for	
Kamailio	TLS,	Nginx	TLS	and	coTURN	TLS.	Run	the	following	on	each	server	you	need	certificates	for	
(you	must	stop	services	running	on	port	443	during	certificate	request/renewal):	

# git clone https://github.com/letsencrypt/letsencrypt 
# cd letsencrypt 
# ./letsencrypt certonly --standalone -d YOUR-DOMAIN 
	
You	will	then	find	the	certificates	under:	

/etc/letsencrypt/live/YOUR-DOMAIN/privkey.pem 
/etc/letsencrypt/live/YOUR-DOMAIN/fullchain.pem 
	
Copy	them	to	the	appropriate	location.		

A.2 Get	configuration	files	

Files	needed	to	setup	all	components	on	Debian	8	Jessie:	



Conclusions	

	

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 17	

git clone https://github.com/havfo/WebRTC-to-SIP.git 
cd WebRTC-to-SIP 
find . -type f -print0 | xargs -0 sed -i 's/XXXXX-XXXXX/PUT-IP-OF-YOUR-SIP-
SERVER-HERE/g' 
find . -type f -print0 | xargs -0 sed -i 's/XXXX-XXXX/PUT-DOMAIN-OF-YOUR-
SIP-SERVER-HERE/g' 
find . -type f -print0 | xargs -0 sed -i 's/XXX-XXX/PUT-DOMAIN-OF-YOUR-
TURN-SERVER-HERE/g' 

A.3 Install	rtpengine	

The	 following	 achieves	 the	 SRTP-RTP	 bridging	 needed	 to	make	WebRTC	 clients	 talk	 to	 legacy	 SIP	
server/clients:	

apt-get install dpkg-dev debhelper iptables-dev  
 libcurl4-openssl-dev libglib2.0-dev libhiredis-dev  
 libpcre3-dev libssl-dev markdown zlib1g-dev  
 libxmlrpc-core-c3-dev dkms linux-headers-`uname -r` 
git clone https://github.com/sipwise/rtpengine.git 
cd rtpengine 
./debian/flavors/no_ngcp 
dpkg-buildpackage 
cd .. 
dpkg -i 'ngcp-rtpengine-daemon_*' 'ngcp-rtpengine-iptables_*' 'ngcp-
rtpengine-kernel-dkms_*' 
cd WebRTC-to-SIP 
cp etc/default/ngcp-rtpengine-daemon /etc/default/ 
/etc/init.d/ngcp-rtpengine-daemon restart 

A.4 Install	IPTables	firewall	(optional)	

Optional,	but	recommended	to	secure	your	servers.	It	will	work	on	all	three	servers,	but	you	should	
customize	_iptables.sh_	for	each	of	them	(e.g.	the	web	server	does	not	need	the	TURN,	RTPENGINE	
and	RTP	rules,	while	the	TURN	server	does	not	need	the	RTPENGINE	rule).	If	 installed	it	will	persist	
after	reboot.	You	can	run	the	_iptables.sh_	at	any	time	after	it	is	set	up.	

cd WebRTC-to-SIP 
chmod +x iptables.sh 
cp etc/network/if-up.d/iptables /etc/network/if-up.d/ 
chmod +x /etc/network/if-up.d/iptables 
touch /etc/iptables/firewall.conf 
touch /etc/iptables/firewall6.conf 
./iptables.sh 

A.5 Install	Kamailio	

apt-get install kamailio kamailio-websocket-modules kamailio-mysql-modules 
kamailio-tls-modules kamailio-presence-modules mysql-server 
cd WebRTC-to-SIP 



Conclusions	

	

SA8T2	Internal	Deliverable	
Technology	Scout:	WebRTC2SIP	Gateway	 18	

cp etc/kamailio/* /etc/kamailio/ 
kamdbctl create 
	
Select	yes	(Y)	for	all	options.	
	
kamctl add websip websip 
/etc/init.d/kamailio restart 

A.6 Install	WebRTC	client	

apt-get install nginx 
cd WebRTC-to-SIP 
cp etc/nginx/sites-available/default /etc/nginx/sites-available/ 
cp -r client/* /var/www/html/ 

A.7 Install	TURN	server	

apt-get install rfc5766-turn-server 
cp etc/default/rfc5766-turn-server /etc/default/ 
cp etc/turn* /etc/ 
/etc/init.d/rfc5766-turn-server restart 

A.8 Testing	

You	should	now	be	able	to	go	to	https://webrtcnginxserver/	and	call	to	legacy	SIP	clients.		


