perfSONAR-CTSC Code Review

Version 3 DRAFT
Dec 3, 2015

Authors: Randy Heiland, Andrew Adams, Elisa Heymann (CTSC)

Executive Summary
1 First Principles Vulnerability Assessment
1.1 Architectural analysis
1.2 Resource identification
1.3 Trust and privilege analysis
1.4 Component evaluation
2 Static Code Analysis (via SWAMP)
Appendix
Accessing/Classifying the Code
Options for running a server on an endpoint
Options for running a client
Example usage of client
Tools to help prepare for FPVA
References

Executive Summary

CTSC and perfSONAR have conducted an engagement in which CTSC performed a code
review of perfSONAR’s Bandwidth Test Controller (BWCTL). BWCTL is essentially a daemon
and framework for scheduling and executing non-overlapping performance measurement tests
between sets of participating hosts (endpoints). The code review consisted of two parts: (1) a
First Principles Vulnerability Assessment (FPVA) that involved a manual inspection and analysis
of the code, resulting in detailed architecture and resources diagrams and (manual) detection of
potential vulnerabilities, and (2) an automated/programmatic static source code analysis using
the Software Assurance Marketplace (SWAMP) online service.

Overall, the review of the existing code was quite positive. While there were concerns with the
use of C string commands (str* ()), the code takes sufficient care to minimize vulnerabilities.
BWCTL uses exec* () function calls and spawns processes via fork () and therefore we
recommend sanitizing the environment at the very beginning to avoid sabotage of environment
variables, potentially resulting in vulnerabilities during execution. The static analysis did not flag

any bugs as security errors; however, there were several classified as memory errors that we
recommend be fixed. Looking to the future, CTSC suggests that the perfSONAR team consider
adopting SELinux with a bwct1 targeted policy module for its endpoints. Finally, because
BWCTL relies on the Network Time Protocol (NTP), we recommend following the progress of
and eventually adopting NTPsec (http://www.ntpsec.org/) over NTP classic (http://www.ntp.org/).
Currently, NTPsec is in a public beta release; we recommend waiting for the stable release.

1 First Principles Vulnerability Assessment

This section provides results from a First Principles Vulnerability Assessment (EPVA) [1] for the
perfSONAR Bandwidth Test Controller (BWCTL") code.

1.1 Architectural analysis

The Bandwidth Test Controller (BWCTL) system is a core part of the perfSONAR project. The
major structural components of the BWCTL system (Figure 1) include the endpoint server hosts
that perform the bandwidth tests and the client hosts that make the requests and obtain the
results. Each endpoint runs a server, the bwct 1d daemon, that forks off a resource broker
process (arrow 1). The basic use case for a bandwidth test is that a client, bwct1, initiates a
test between two endpoints (arrow 2). This causes the resource broker to fork a request process
(arrow 3) that will determine whether or not the request is valid. If it is valid, the request process
will request from the resource broker (bidirectional vertical arrow) the resources and time period
requested from the client. Assuming those can be met, the resource broker grants the request.
At this point, the request process forks a peer process (arrow 4) that will verify the time offset to
the other endpoint and initialize the socket used to communicate the results of the test (arrow

5). Assuming the two endpoints are able to communicate and both know the correct time, the
peer process will fork a test process (arrow 6) that will, at the test’s start time, execute the
requested test program (with any parameters) (arrow 7). The test results will be communicated
back to the client (arrow 8).

BWCTL relies on the Network Time Protocol (NTP) to synchronize the timing of tests between
endpoints. All code for BWCTL is written in C (about 25K lines of code spread over about 80
files) and makes extensive use of Unix network programming, including the creation of new
processes (via fork ()), sockets, and signals. It does not, however, use threads. The attack
surface includes the interfaces that are available to users for providing input to the system.
These include the client’'s command line arguments and the server's command line arguments
and configuration file parameters. Figure 1 shows an architecture diagram for BWCTL, showing
a client establishing a test between two servers. (Note: the bwct1d daemon is run as “bwctl”
which is only in the group “bwctl” (groups bwct1)). The following output from the ‘ps’
command reveals the user IDs associated with the client (owct1), the server/daemon (bwct1d)
and its forked processes:

' https://qithub.com/perfsonar/bwctl

http://www.ntpsec.org/
http://www.ntp.org/
http://research.cs.wisc.edu/mist/papers/ccsw12sp-kupsch.pdf
https://github.com/perfsonar/bwctl

[root@gw44 ~]# ps -ef|grep bwcitl

bwctl 10466 1 0 Oct23 ? 00:00:03 /usr/bin/bwctld -c /etc/bwctld -R /var/run

heiland 12970 12946 0 09:29 pts/1 00:00:00 /usr/bin/bwctl -T iperf3 -fm -t 10 -i 1 -c
lInl-pt1.es.net -v

bwctl 12971 10466 0 09:29 ? 00:00:00 /usr/bin/bwctld -c /etc/bwctld -R /var/run

bwctl 12974 12971 0 09:29 ? 00:00:00 /usr/bin/bwctld -c /etc/bwctld -R /var/run

bwctl 12975 12974 6 09:29 ? 00:00:02 iperf3 -c 198.129.254.106 -B 149.165.228.236
-f m -p 5581 -i 1.000000 -V -Z -t 10

0S priv
BWCTL Endpoint host #1 o bwetl BWCTL Endpoint host #2
[user
2. establish BWCTL Client host | 2. establish
.lesl test
resource broker .
] BWCTL Client /

3 ‘ 3. fork ‘ bwetl 3. fork
request request ‘_,-—/
process .. il __/—-’-‘"' process

8. get 8. get —
results results 4. fork
. ™
peer peer 4—-—/
process < ™ process |
S 5. verify time; ~ -
‘ 6. fork | trade results ‘ 6. fork ‘
- . ~\
test L_,/ test ._,/
process #| process
7. bandwidth S

test

Figure 1. perfSONAR BWCTL Architecture Diagram: processes and flow of execution

Resources on bwctld (server) hosts Resources on bwctl (client) hosts

OS priv
bwctld daemon I root bwctl

[user

[bwtl

[perfsonar

opt \ \ log /SA

bwetld Iperfsonar_ps cwampd bwetl test output
binary & scripts, elc. bwetld binary & results
libs config libs

Figure 2. perfSONAR BWCTL Resources

1.2 Resource identification

Figure 2 depicts the key resources used in BWCTL: the endpoint server hosts (running the
bwct1d daemon), the client hosts, configuration files, log files (on both server and client hosts),
and (optionally) output files of test results at the client. Other resources (not depicted in Fig. 2)
will be CPU cycles and network bandwidth used by the hosts. Ideally, the hosts would be
standalone computers with no sensitive information stored on them; however, this decision is
ultimately left to the administrators of those systems. There are no databases associated with
the BWCTL system.

1.3 Trust and privilege analysis

Each endpoint host can have its own degree of trust: a function of the physical security of the
facility and the software security of its operating systems, libraries, and BWCTL dependencies
(including the test utilities). Associated with trust is the privilege level at which each executable
component runs. The privilege levels control the extent of access for each component and, in
the case of exploitation, the extent of damage than could occur. The fact that multiple processes
are forked within the bwct1d server means that certain privileges are being delegated to those
processes.

1.4 Component evaluation

In this component of the FPVA process, we have attempted to manually examine key pieces of
the BWCTL code base. In this case, we examined the C code for the server (bwctld.c) and
client (bwctl.c), as well as supporting code (/bwlib). Some potential vulnerabilities include
buffer overflow (due to the use of strcat (), etc) and the use of the exec* system function to
execute user-supplied scripts. However, in looking at the source code, all instances of the

strcpy(3) and strcat(3) routines either (i) use internal arguments, e.g., #DEFINE values, (ii)
are preceded by strlen(3) checks on the untainted variables to verify that the copy will
succeed, or (iii) are used with st rdup(3) returned pointers, i.e., st rdup(3) creates a
sufficiently sized buffer to hold the external variable. Hence, the team sees no problem in the
BWCTL source code with the use of non-buf-length-checking string routines. Similarly, BWCTL
uses the execve(2) family of calls to execute external programs, thereby averting many
vulnerabilities associated with the use of system(3). Note, the code does not appear to have
included checks that each command variable passed to exec1p(3) or execvp(3) is initiated
with a “/” value, thus avoiding the potential threat in relying on the PATH environment variable
(see [2]). Moreover, the code does not check to verify that the user is incapable of modifying the
file pointed to by the command variables (see [3]). However, we believe the risk of both threats
is minor.

Ideally, to reduce the risk the perfSONAR project incurs due to the use of a compromised or
misused BWCTL, we recommend a mandatory access control mechanism like SELinux?. Since
perfSONAR nodes are distributed on CentOS 6, SELinux is available, and the more tractable
option of enabling it in targeted mode exists®. Unfortunately, as of this engagement, CentOS 6's
default targeted policy module does not contain a domain for bwct1. If SELinux is enabled in
targeted mode, bwct1 will be assigned to the unconfined t domain, and executed with
standard Unix permissions, unconstrained by SELinux. Thus, the preferred solution is to create
a targeted policy module that can be loaded into a SELinux enabled kernel which is capable of
containing bwct 1. The steps to develop a policy module from scratch are nontrivial. In short, (i)
a new policy for the bwct1 domain must be created and loaded, (ii) the bwct1 executable must
be assigned to the new domain, (iii) the application must be executed in permissive mode (this
will log all audit messages), and (iv) audit2allow is run over the audit messages to build the
actual targeted policy (see [4] and [5] for information regarding these steps).

2 Static Code Analysis (via SWAMP)

In addition to the FPVA analysis described above, CTSC also performed a static code analysis
of the BWCTL code using the Software Assurance Marketplace (SWAMP* °): a no-cost,
high-performance, centralized cloud computing platform that includes both open-source and
commercial software security testing tools. SWAMP also offers options for viewing results from
an analysis.

2 http://selinuxproject.org/page/Main_Page
3

https://www.centos.org/docs/5/html/Deployment Guide-en-US/sec-sel-policy-targeted-oview.ht
ml

4 https://continuousassurance.org/

5 https://continuousassurance.org/swamp/SWAMP-WP002-Framework.pdf

http://selinuxproject.org/page/Main_Page
https://www.centos.org/docs/5/html/Deployment_Guide-en-US/sec-sel-policy-targeted-oview.html
https://www.centos.org/docs/5/html/Deployment_Guide-en-US/sec-sel-policy-targeted-oview.html
https://continuousassurance.org/
https://continuousassurance.org/swamp/SWAMP-WP002-Framework.pdf

Although CTSC had some experience with SWAMP, using it to analyze the BWCTL code
presented a bit of a challenge. (We are happy to share our experience with perfSONAR staff if
that would be useful). Figure 3 shows results from SWAMP, running the Clang Static Analyzer
tool on a snapshot of the BWCTL code. It found 28 “bugs” in the code, however, none were
found in the Security Checker classification
(http://clang-analyzer.llvm.org/available_checks.html#security_checkers). In spite of this, CTSC

still suggests following the recommendations in the previous section.

Total

28 2

Category
API

API

Dead store
Dead store
Dead store

Dead store

Dead store
Dead store

Dead store

Dead store

Dead store

Dead store

Dead store

Dead store

Dead store

Logic error

API

Dead store Logic error

13 3

File

bwectl/I2util/pfstore/pfstore.c

bwctl/12util/l2util/conf.c

bwctl/bwlib/tools.c
bwctl/12util/12util/ErrLogSyslog.c
bwectl/bwlib/endpoint.c
bwctl/12util/12util/hmac-sha1.c

bwctl/bwctld/policy.c
bwectl/bwctl/bwctl.c

bwctl/bwlib/paris-traceroute.c

bwctl/bwctld/bwctld.c
bwctl/I12util/lI2util/hmac-shai.c

bwectl/bwlib/paris-traceroute.c

bwectl/bwlib/protocol.c

bwctl/bwctld/policy.c

bwectl/bwlib/protocol.c

bwctl/bwlib/endpoint.c

Memory Error

10

Line

279

641

133
406
1549
157

1400
3018
141

2311
161

137

920

1393
1278

1541

Security Unix API

0 0

Message

Null pointer passed as an argument
to a 'nonnull' parameter

Null pointer passed as an argument
to a 'nonnull' parameter

Value stored to 'n' is never read
Value stored to 'size' is never read
Value stored to 'aval' is never read

Value stored to 'keylen' is never
read

Value stored to 'ret' is never read
Value stored to 'tid' is never read

Value stored to 'local_side' is never
read

Value stored to 'argVv' is never read

Value stored to 'keylen' is never
read

Value stored to 'local_side' is never
read

Value stored to 'omit_available' is
never read

Value stored to 'ret' is never read

Value stored to 'omit_available' is
never read

The left operand of >='is a garbage

http://clang-analyzer.llvm.org/available_checks.html#security_checkers

value

Logic error bwctl/bwlib/endpoint.c 1239 Access to field 'sockfd' results in a
dereference of a null pointer (loaded
from field 'rentrl')

Logic error bwectl/I2util/I2util/conf.c 956 Division by zero

Memory bwctl/bwctld/policy.c 467 Potential leak of memory pointed to
Error by 'tnode.limits'

Memory bwctl/bwlib/context.c 216 Use of memory after it is freed
Error

Memory bwctl/bwctld/policy.c 889 Potential leak of memory pointed to
Error by 'policy’

Memory bwctl/bwctld/policy.c 467 Potential leak of memory pointed to
Error by 'tnode.nodename’

Memory bwctl/bwctld/bwctld.c 2027 Potential leak of memory pointed to
Error by 'new_posthook'

Memory bwctl/bwctl/bwctl.c 3711 Potential leak of memory pointed to
Error by 'scheduled_times_schedule'
Memory bwectl/I2util/I2util/hmac-sha1.c 110 Potential leak of memory pointed to
Error by 'hmac'

Memory bwectl/I2util/12util/random.c 79 Potential leak of memory pointed to
Error by 'rand_src'

Memory bwctl/bwctld/policy.c 467 Potential leak of memory pointed to
Error by 'node’

Memory bwctl/bwctld/policy.c 479 Potential leak of memory pointed to
Error by 'tnode.used'

Figure 3. Output results of an initial SWAMP run on BWCTL code

Appendix

In this Appendix, we take a closer look at the use of BWCTL and highlight some tools that might
be helpful with the FPVA process.

Accessing/Classifying the Code

/tmp$ git clone https://github.com/perfsonar/bwctl.git
Cloning into 'bwctl'...
remote: Counting objects: 5547, done.

remote: Total 5547 (delta 0), reused 0 (delta 0), pack-reused 5547
Receiving objects: 100% (5547/5547), 7.11 MiB | 7.34 MiB/s, done.
Resolving deltas: 100% (1947/1947), done.

Checking connectivity... done.

After bundling in the 12util library that contains several utility functions used by BWCTL, we end
up with:
/tmp$ perl ~/Downloads/cloc-1.64.pl bwctl

162 text files.

150 unique files.

44 files ignored.

http://cloc.sourceforge.net v 1.64 T=1.03 s (115.4 files/s, 45373.9 lines/s)

Language files blank comment code
C 51 4036 9228 21877
C/C++ Header 29 728 2197 3241
Perl 7 342 562 1686
HTML 5 171 43 991
m4 7 58 11 461
XML 3 20 28 151
make 13 57 440 134
Bourne Shell 3 19 77 132
Bourne Again Shell 1 13 27 79
SUM: 119 5444 12613 28752

Options for running a server on an endpoint

We followed the instructions here (http://docs.perfsonar.net/install_centos.html) to install the
perfSONAR Toolkit as rpm bundles on an existing CentOS host (endpoint) and start the
bwct1ld daemon. In general, here are the options for running the daemon:

$ bwctld -h

Usage: bwctld [options]

Where "options" are:

http://docs.perfsonar.net/install_centos.html

-a authmode Default supported

authmodes: [E]ncrypted, [A]Juthenticated, [O]pen

-c confdir Configuration directory

-e facility syslog facility to log errors

-f Allow daemon to run as "root" (folly!)
-G group Run as group "group" :-gid also valid
-h Print this message and exit

-R vardir Location for pid file

-S nodename:port Srcaddr to bind to

-U/-G options only used if run as root

-U user Run as user "user" :-uid also valid
-V version
-w Debugging: busy-wait children after fork to allow
attachment
-7 Debugging: Run in foreground
Version: 1.5.5-1
Options for running a client
$ bwctl -h
bwctl:
usage: bwctl [arguments]
Connection Arguments
-4 |--ipv4 Use IPv4 only
-6|--1ipv6 Use IPv6 only
-B|--local address <address> Use this as a local address for control
connection and tests
-c|--receiver <address> The host that will act as the receiving side

for a test

-E|--no_endpoint

running bwctl (Default: False)
-o|--flip

(Default: False)

-s|--sender <address>

a test

Scheduling Arguments
-a|--allow _ntp unsync <seconds>
offset

-I|--test interval <seconds>
-L|--latest time <seconds>

to run

Allow tests to occur when the receiver isn't

Have the receiver connect to the sender

The host that will act as the sending side for

Allow unsynchronized clock - claim good within

Time between repeated bwctl tests

Latest time into an interval to allow a test

-n|--num tests <num> Number of tests to perform (Default: 1)
-R|--randomize <percent> Randomize the start time within this
percentage of the test's interval (Default: 10%)

--schedule <schedule> Specify the specific times when a test should
be run (e.g. --schedule 11:00,13:00,15:00)

--streaming Request the next test as soon as the current
test finishes

Test Arguments

-b|--bandwidth <bandwidth> Bandwidth to use for tests (bits/sec KM)
(Default: 1Mb for UDP tests, unlimited for TCP tests)
-D|--dscp <dscp> RFC 2474-style DSCP value for TOS byte
-i|--report interval <seconds> Tool reporting interval
-1|--buffer length <bytes> Length of read/write buffers
-O|--omit <seconds> Omit time (currently only for iperf3)
-P|--parallel <num> Number of concurrent connections
-S|--tos <tos> Type-Of-Service for outgoing packets
-T|--tool <tool> The tool to use for the test
Available Tools:

iperf

iperf3

nuttcp
-t|--test duration <seconds> Duration for test (Default: 10)
-u|--udp Perform a UDP test
-w|--window <bytes> TCP window size (Default: system default)
-W|--dynamic window <bytes> Dynamic TCP window fallback size (Default:
system default)
-—tester port <port> For an endpoint-less test, use this port as

the server port (Default: tool specific)

Output Arguments

-d|--output dir <directory> Directory to save session files to (only if
-p)

-e|--facility <facility> Syslog facility to log to

-f|--units <unit> Type of measurement units to return (Default:
tool specific)

-pl--print Print results filenames to stdout (Default:
False)

-gql--quiet Silent mode (Default: False)

-r|--syslog to stderr Send syslog to stderr (Default: False)
-v|--verbose Display verbose output

-x|--both Output both sender and receiver results
-y|—-—format <format> Output format to use (Default: tool specific)
--parsable Set the output format to the machine parsable

version for the select tool, if available

Misc Arguments
-h|--help Display the help message

-V|--version

Version: 1.5.5-

1

Show version number

Example usage of client

In the following example, we perform an iperf3 test between an endpoint and the client host.

[heiland@gw44 ~]1$ /usr/bin/bwctl -T iperf3 -f m -t 10 -i 1 -c llnl-ptl.es.net

bwctl: Using tool:

iperf3

bwctl: 50 seconds until test results available

SENDER START

Connecting to host 198.129.254.10¢,

port 5027

15] local 149.165.228.236 port 59438 connected to 198.129.254.106 port 5027

[

[ID] Interval Transfer Bandwidth Retr Cwnd

[15] 0.00-1.00 sec 18.7 MBytes 157 Mbits/sec 0 3.42 MBytes

[15] 1.00-2.00 sec 148 MBytes 1237 Mbits/sec 1 11.2 MBytes

[15] 2.00-3.00 sec 181 MBytes 1520 Mbits/sec 3 9.80 MBytes

[15] 3.00-4.00 sec 192 MBytes 1615 Mbits/sec 0 11.3 MBytes

[15] 4.00-5.00 sec 188 MBytes 1573 Mbits/sec 0 11.1 MBytes

[15] 5.00-6.00 sec 195 MBytes 1636 Mbits/sec 0 11.4 MBytes

[15] 6.00-7.00 sec 179 MBytes 1499 Mbits/sec 0 10.1 MBytes

[15] 7.00-8.01 sec 188 MBytes 1559 Mbits/sec 2 10.6 MBytes

[15] 8.01-9.00 sec 199 MBytes 1681 Mbits/sec 0 11.3 MBytes

[15] 9.00-10.00 sec 196 MBytes 1647 Mbits/sec 0 8.26 MBytes

[ID] Interval Transfer Bandwidth Retr

[15] 0.00-10.00 sec 1.64 GBytes 1412 Mbits/sec 6 sender
[15] 0.00-10.00 sec 1.64 GBytes 1410 Mbits/sec receiver
iperf Done.

SENDER END

Tools to help prepare for FPVA

.../perfsonar/github/bwctl$ 1ls -m

CHANGES, Changelog, DEVREADME, I2util/, INSTALL, LICENSE, Makefile,

Makefile.am, Makefile.in,

bwlib/, conf/,
contrib/, doc/,

config/,

foo.ls,

README, README.md, RELEASE.TODO, TODO,
automdte.cache/, bootstrap.sh*, bwctl/, bwctl.spec, bwctl.spec.in, bwctld/,

config.log,
libtool~™,

config.status*,
test/

configure*,

aclocal.m4,

configure.ac,

The primary subdirectories containing the code base include:
bwctl/, bwctld/, bwlib/

In addition, the 12util/ subdirectory is the Internet2 (12) Utility library and contains:
Originally:

* error logging

* command-line parsing

* threading

perfSONAR added:
* random number support
* hash table support

To look for processes within the code, we can begin by using grep to look for main() programs
or fork()'d processes:

..../perfsonar/github/bwctl$ grep "main (" bw*/*.c
bwctl/bwctl.c:main (

bwctld/bwctld.c:main (int argc, char *argvl[])
bwlib/rijndael-test-fst.c:int main (void) {

.../perfsonar/github/bwctl$ grep 'fork()' bw*/*.c |grep '='

bwctl/bwctl.c: pid = fork();
bwctld/bwctld.c: pid = fork();
bwctld/bwctld.c: pid = fork();
bwctld/bwctld.c: pid = fork();
bwctld/bwctld.c: mypid = fork();
bwlib/endpoint.c: ep->child = fork();
bwlib/endpoint.c: ep->child = fork();
bwlib/util.c: pid = fork();

After manually inspecting the code a bit, we find the
.../perfsonar/github/bwctl/bwlib$ grep -i execcommand *.c

iperf.c: n = ExecCommand (ctx, buf, sizeof (buf), cmd, "-v", NULL);
iperf3.c: n = ExecCommand (ctx, buf, sizeof (buf), cmd, "-v", NULL);
nuttcp.c: n = ExecCommand (ctx, buf, sizeof (buf), cmd, "-V", NULL);
owamp.cC: n = ExecCommand(ctx, buf, sizeof (buf), owping cmd, "-h", NULL);
owamp.cC: n = ExecCommand (ctx, buf, sizeof (buf), owampd cmd, "-h", NULL);
paris-traceroute.c: n = ExecCommand (ctx, buf, sizeof (buf), traceroute cmd,
"127.0.0.1", NULL);

ping.c: n = ExecCommand(ctx, buf, sizeof (buf), ping cmd, "-c", "1",
"127.0.0.1", NULL);

ping.c: n = ExecCommand (ctx, buf, sizeof (buf), ping6_cmd, "-c", "1", "::1",
NULL) ;

tools.c: n = ExecCommand (ctx, buf, sizeof (buf), cmd, "-h", NULL);

tracepath.c: n = ExecCommand (ctx, buf, sizeof (buf), tracepath cmd, NULL);

tracepath.c: n = ExecCommand (ctx, buf, sizeof (buf), tracepath6 cmd, NULL);
traceroute.c:

n = ExecCommand(ctx, buf, sizeof (buf), traceroute cmd,
"127.0.0.1", NULL):;
n

traceroute.c: = ExecCommand (ctx, buf, sizeof (buf), traceroute6 cmd, "::1",
NULL) ;

util.c:ExecCommand (

util.c: BWLError (ctx, BWLErrFATAL, errno, "ExecCommand () :pipe () : SM");
util.c: BWLError (ctx, BWLErrFATAL, errno, "ExecCommand () :pipe () : SM");
util.c: BWLError (ctx, BWLErrFATAL, errno, "ExecCommand () : fork () : SM");
util.c: snprintf (buf, sizeof (buf) -1, "ExecCommand () : exec (%s)", command) ;
util.c: "ExecCommand () : waitpid(), rc = %d: SM",rc);

util.c: "ExecCommand () : %s exited due to signal=%d",
util.c: BWLError (ctx, BWLErrWARNING, errno, "ExecCommand () : %$s unusable",
command) ;

With this information, one would then analyze the util.c:ExecCommand function which does
a fork (), redirects output to pipes, and does an execvp.

References

[1] James A. Kupsch, Barton P. Miller, Eduardo César, and Elisa Heymann, "First
Principles Vulnerability Assessment", 2010 ACM Cloud Computing Security
Workshop (CCSW), Chicago, IL, October 2010.

[2] CERT: Sanitize the environment when invoking external programs URL.
https://www.securecoding.cert.org/confluence/display/c/ENV03-C.+Sanitize+the+environment+
when+invoking+external+programs

[3] CERT: Do not call system() URL.
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageld=2130132

[4] CentOS: Targeted Policy Overview URL.
https://www.centos.org/docs/5/html/Deployment Guide-en-US/sec-sel-policy-targeted-oview.ht
ml

[5] CentOS: Writing an SELinux module URL.
http://www.billauer.co.il/selinux-policy-module-howto.htmI#SECTION00060000000000000000

https://www.securecoding.cert.org/confluence/display/c/ENV03-C.+Sanitize+the+environment+when+invoking+external+programs
https://www.securecoding.cert.org/confluence/display/c/ENV03-C.+Sanitize+the+environment+when+invoking+external+programs
https://www.securecoding.cert.org/confluence/display/c/ENV03-C.+Sanitize+the+environment+when+invoking+external+programs
https://www.securecoding.cert.org/confluence/display/c/ENV03-C.+Sanitize+the+environment+when+invoking+external+programs
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2130132
https://www.centos.org/docs/5/html/Deployment_Guide-en-US/sec-sel-policy-targeted-oview.html
https://www.centos.org/docs/5/html/Deployment_Guide-en-US/sec-sel-policy-targeted-oview.html
http://www.billauer.co.il/selinux-policy-module-howto.html#SECTION00060000000000000000

