

Wireless performance (in the LAN environment)

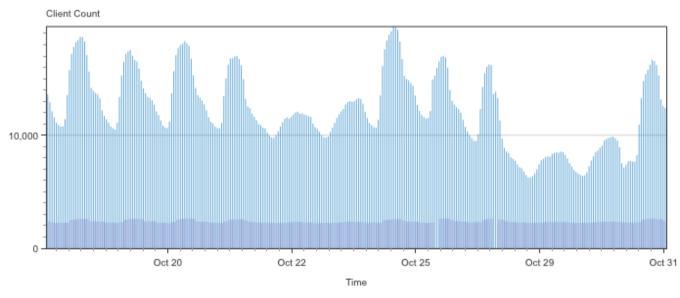
SIG-PMV meeting, SWITCH, Zurich - 03.11.2016

Dr Alan Buxey
Loughborough University

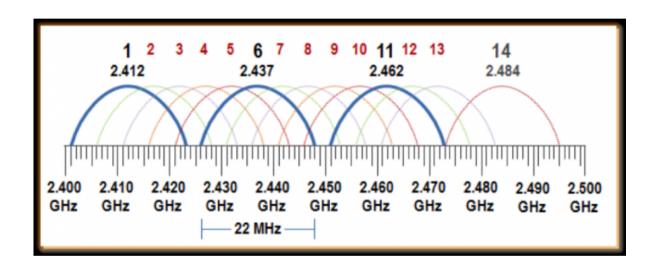
[this page left intentionally blank]

Introduction

Rapid overview of Wireless performance issues

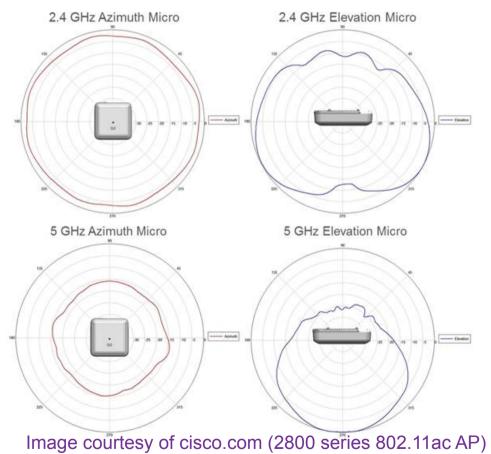

Wireless LAN consideration, not WAN

CWNP - CWNP, CWDP etc


eduPERT Vilnius TNC (2010)

(Task Leader : Alessandra Scicchitano)

\$\$\$\$ being spent



WiFi outside the Oslo School of Architecture and Design

http://www.yourban.no/2011/02/22/immaterials-light-painting-wifi/

Layer 1/layer 2 issues abound - unlike wired...

Absorption – attenuation by materials signal passes through (1/8 to 1/2 or more!)

Reflection, Refraction, Scattering and diffraction – RF signal propagation is altered by interaction with objects

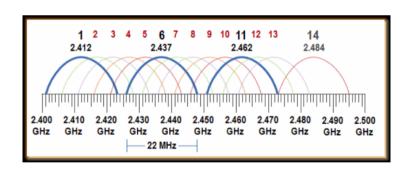
Free Space Path Loss – open space attenuation (as signal spreads out)

Gain – signal amplification

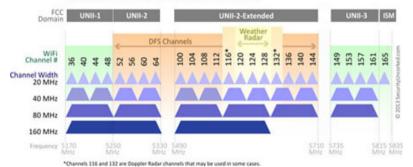
RF interference – narrowband/wideband/allband

Cordless phones, microwaves, video camera, baby monitors, DECT etc

....bluetooth....

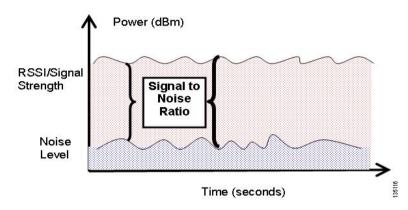


Multipath

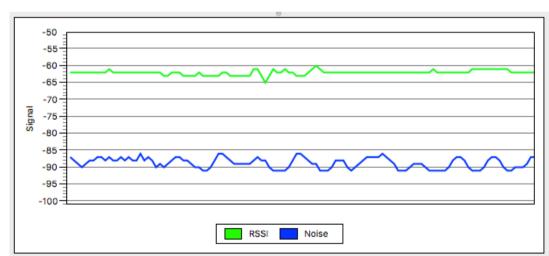

...bad for older kit but needed for 11n/ac!

Adjacent channel interference image of channels 25MHz separation – only 3 for 2.4GHz in 5GHz 'nonoverlapping' (20MHz separation)

802.11ac Channel Allocation (N America)

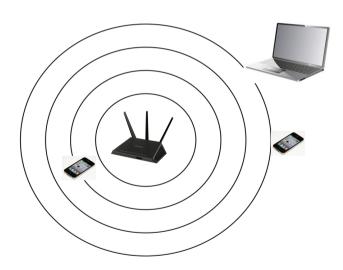

analogy

https://commons.wikimedia.org/wiki/File%3AM60_motorway%2C_Denton.jpg


Bob Abell [CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons

From cisco.com

Signal to Noise ratio (SnR)



From my Mac

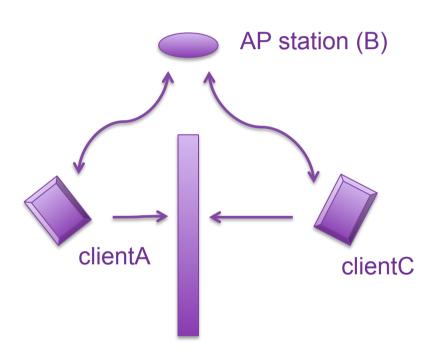
Mismatched power

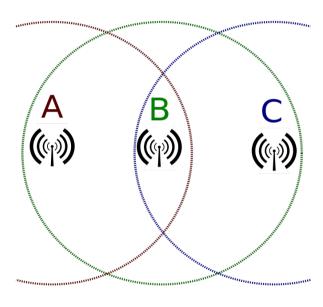
Client can hear AP (at 100mW), AP cannot hear client (at 20mW)

Near/Far

Low power client at distance from AP not heard if high powered clients are closer (which raise the noise floor)

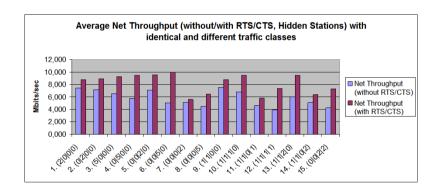
Analogy – crowded bar





https://commons.wikimedia.org/wiki/File:WP10 in Pittsburgh 27.jpg

Hidden node



https://en.wikipedia.org/wiki/Hidden_node_problem#/media/File:Wifi_hidden_station_problem.svg

https://commons.wikimedia.org/wiki/File:StateLibQld_1_210610_Customer_service_counter_inside_the_new_Commonwealth_Bank,_Brisbane,_1953.jpg

https://commons.wikimedia.org/wiki/File:RTS_CTS_benchmark.png

Coverage considerations

Dynamic rate switching (DRS) – Modulation and Coding Schemes (MCS)

802.11n											802.11ac
HT MCS Index	Spatial Streams	Modulation & Coding	Data Rate GI = 800ns 20MHz	Data Rate SGI = 400ns 20MHz	Data Rate GI = 800ns 40MHz	Data Rate SGI = 400ns 40MHz	Data Rate GI = 800ns 80MHz	Data Rate SGI = 400ns 80MHz	Data Rate GI = 800ns 160MHz	Data Rate SGI = 400ns 160MHz	VHT MCS Index
1	1	QPSK 1/2	13	14.4	27	30	58.5	65	117	130	1
2	1	QPSK 3/4	19.5	21.7	40.5	45	87.8	97.5	175.5	195	2
3	1	16-QAM 1/2	26	28.9	54	60	117	130	234	260	3
4	1	16-QAM 3/4	39	43.3	81	90	175.5	195	351	390	4
5	1	64-QAM 2/3	52	57.8	108	120	234	260	468	520	5
6	1	64-QAM 3/4	58.5	65	121.5	135	263.3	292.5	526.5	585	6
7	1	64-QAM 5/6	65	72.2	135	150	292.5	325	585	650	7
	1	256-QAM 3/4	78	86.7	162	180	351	390	702	780	8
	1	256-QAM 5/6	n/a	n/a	180	200	390	433.3	780	866.7	9
8	2	BPSK 1/2	13	14.4	27	30	58.5	65	117	130	0
9	2	QPSK 1/2	26	28.9	54	60	117	130	234	260	1
10	2	QPSK 3/4	39	43.3	81	90	175.5	195	351	390	2
11	2	16-QAM 1/2	52	57.8	108	120	234	260	468	520	3
12	2	16-QAM 3/4	78	86.7	162	180	351	390	702	780	4
13	2	64-QAM 2/3	104	115.6	216	240	468	520	936	1040	5
14	2	64-QAM 3/4	117	130.3	243	270	526.5	585	1053	1170	6
15	2	64-QAM 5/6	130	144.4	270	300	585	650	1170	1300	7
	2	256-QAM 3/4	156	173.3	324	360	702	780	1404	1560	8
	2	256-QAM 5/6	n/a	n/a	360	400	780	866.7	1560	1733.3	9
16	3	BPSK 1/2	19.5	21.7	40.5	45	87.8	97.5	175.5	195	0
17	3	QPSK 1/2	39	43.3	81	90	175.5	195	351	390	1
18	3	QPSK 3/4	58.5	65	121.5	135	263.3	292.5	526.5	585	2
19	3	16-QAM 1/2	78	86.7	162	180	351	390	702	780	3
20	3	16-QAM 3/4	117	130	243	270	526.5	585	1053	1170	4
21	3	64-QAM 2/3	156	173.3	324	360	702	780	1404	1560	5
22	3	64-QAM 3/4	175.5	195	364.5	405	n/a	n/a	1579.5	1755	6
23	3	64-QAM 5/6	195	216.7	405	450	877.5	975	1755	1950	7
	3	256-QAM 3/4	234	260	486	540	1053	1170	2106	2340	8
	3	256-QAM 5/6	260	288.9	540	600	1170	1300	n/a	n/a	9

Also, MCS Value Achieved by Clients at Various Signal to Noise Ratio Levels (SNR) http://www.wlanpros.com/wp-content/uploads/2015/06/Revolution-Wi-FI-MCS-to-SNR-Single-Page.pdf

Coverage considerations

Roaming

Moving from one AP to another – can be fast…needs to be fast for some applications (eg < 150ms for VoWiFi)

802.11k (RRM and neighbour reports to move AP)

802.11r faster secure handoffs

Coverage considerations

Co-channel interference

Really should be called "Co-channel co-operation"!

It's a fundamental part of WiFi – same channel, CSMA/CA mechanism

Its better to have APs on same channel than adjacent *if* some agreement needs to be made (e.g. with 3rd party)

....and it all relies on the wired network

Wi-Fi can be 'perfect' but still relies on the wired network it uses to transit client/control data!

If you've got issues there then that just compounds the wireless domain (L1/L2) issues – the WiFi is using the wired for user data transit AND control plane etc

What about dealing with Loss? (eduPERT angle...)

WiFi is an environment with loss (due to interference etc etc). What about just *accepting* that and dealing with it?

Different TCP algorithms:

Westwood, Forward, new Reno, TCP BBR etc (forget Vegas, SACK, Tahoe....)

Monitoring/validation etc

- WiFiMon crowd sourced monitoring
- UNINETT Trådløs probe (WiFi probe)
- PerfSONAR have wireless nodes talking to wired target(s) – MADDash matrix
- APs in monitor mode/'CleanAir' et al

Final thoughts (PMV)

- "System One and System Two" Daniel Kahneman
- emotional/intuitive/instinctive (heart) versus research/ analysis (head) – think 'possible outcomes of your actions'

"The brightest flashes in the world of thought are incomplete until they have been proven to have their counterparts in the world of fact" - John Tyndall

- All research [and other activities] must have 2 phases – information gathering and verification

Thank you!

Alan Buxey a.l.m.buxey@lboro.ac.uk

Inspiring Winners Since 1909