Stroboscoping The Internet Olav Kvittem

Olav Kvittem UNINETT 03.11.16

Picture from wikipedia.org

Overview

- Measureing global end to end quality
- Focus on routing convergence time
- Tools
- Metods
- Results routing sucks
 - A tool to improve routing

Dragonlab

- Dragon-lab project at Tsinguha Univ.
- Dragonlab confederation is affiliated
- Traffic measurements
- with CERNET, U. Auckland, NTE (commercial internet operator)
- Micro dependability rerouting effects
- Commercial and academic path
- Cernet is out
- Switch, RNP, Nordunet is in

Auckland

Micro dependability

- Global routing is complex -
 - how well does The Internet perform on small time scales?
 - We have triple redundancy but does it work
- Packet loss incurs on
 - Congestion
 - Fault detection
 - Route computation
 - Route change propagation
 - Micro loops

• Tuning

- Signal loss detection time
- Routing updates keepalive
- BGP active/passive mode
- IGP Fast hello
- IP Fast Reroute

Measurement setup

- Linux systems
- Rude/crude, traceroute
- Fine grained probing 100(0) pps
 - Cover SDH 50ms protection time
- Problems:
 - precision on timestamps in user space o (ms)
 - Linux kernel changed to immediate receiver sceduling 4+ years ago
 - Buffering in nic's o(100us)
 - NTP o(ms) absolute delay difficult to measure
 - Down to sub ms by tuning ntpd
 - Packet arrival time differences OK
 - Delay vary with path
 - · checking remaining TTL in packets to indicate route change

Loss analysis

(a) Significant change in the (b) Small change in the fixed fixed part of packet delays part of packet delays

(c) No change in the fixed part (d) Example of loss event caused of packet delays by congestion

Fig. 5: Examples of the observed delay-loss patterns

- How to separate congenstion from failure automatically?
- Increasing + decreasing delay => congestion ?
- Flat delay => failure ?
- Changed ttl => rerouting

Traceroute patterns

- Traceroute packets frequently dropped by routers?
 - Normally not
- Traceroute method
 - Repeats 6 times
 - Changes ports every packet applies to different flows
 - We see sammle of hops for different flows not The Route
- Graphing routes -
 - add nodes for ip-addresses
 - Add edges for consequent nodes
 - Auto layout
- Geoip location of address owner
- Shows equal cost path sharing paths
 - Alternate routes visible if longer that traceroute interval (1min)

Uninett to NZ

Delay patterns around loss

grapn/m-tronuneim-mp.png

UNINETT

Dependability measurements

Assumptions

- NRENs don't have congestion
- Longer gaps are dure to outage
- Rerouteing may take unneccessary time
- Outages are unwanted and uneccessary

Investigating longer gaps

- Locate router with traceroute logs
- See alternate pats by looking at use counts
- Estimate congestion by looking at jitter in rude and traceroute delay
- Check the NOC logs to find matching incidents

Measures

- Stream of UDP packets with
 - sequence numbers
 - Length of outage
 - Reordering is not frequent but happens on bad days
 - time stamps
 - Last 50 packets before and after outage
 - Minimum delay in latest 1000 pakcets
 - Relative delay rise not sensitive to clock skew
 - Regression coeffcient to see rise of delay
 - Jitter

Cases

- Saw 130seconds outage when rebooting border router
 - Passive BGP alternate path had to be reannounced
 - IP Fast Reroute brought it down to a few seconds
- Unstable fibre caused 10 times 1 min outage
 - Take down path manually
 - Update of full forwarding table takes 76 seconds
 - partial rewrite feature in newer routers

Loss day profile

Loss summary UNINETT router upgrade

🕽 🔰 iou2.uninet	t.no/mp-rude-sum/gap-sum	-2016-02-12.txt			Σ
егдеп-шр.атр.по	acesunu-mp.nracs.no	2010-02-12 20.33.40		121070	
ergen-mp.uib.no	alesund-mp.hials.no	2016-02-12 20:45:52	1455309952.920081	1560	
nu-mp.ntnu.no	alesund-mp.hials.no	2016-02-12 20:45:52	1455309952.926841	1120	
rgen-mp.uib.no	drammen-mp.hibu.no	2016-02-12 21:25:53	1455312353.090096	1230	
ergen-mp.uib.no	forde-mp.hisf.no	2016-02-12 21:25:53	1455312353.090100	1230	
ergen-mp.uib.no	gjovik-mp.hig.no	2016-02-12 21:25:53	1455312353.090108	1230	
ergen-mp.uib.no	ntnu-mp.ntnu.no	2016-02-12 21:25:53	1455312353.090141	1230	
ergen-mp.uib.no	pil32-mp.hioa.no	2016-02-12 21:25:53		1230	
ergen-mp.uib.no	steinkjer-mp.hint.no	2016-02-12 21:25:53		1230	
ergen-mp.uib.no	tromso-mp.uit.no	2016-02-12 21:25:53		1230	
romso-mp.uit.no	bergen-mp.uib.no	2016-02-12 21:25:53		129230	
ime.hint.no	bergen-mp.uib.no	2016-02-12 21:25:53		129190	
orsgrunn-mp.hit.no	bergen-mp.uib.no	2016-02-12 21:25:53		129180	
rammen-mp.hibu.no	bergen-mp.uib.no	2016-02-12 21:25:53		129180	
slo-mp.uio.no	bergen-mp.uib.no	2016-02-12 21:25:53		129180	
redrikstad-mp.hiof.no	bergen-mp.uib.no	2016-02-12 21:25:53		129180	
rimstad-mp.uia.no	bergen-mp.uib.no	2016-02-12 21:25:53		129190	
ristiansand-mp.uia.no	bergen-mp.uib.no	2016-02-12 21:25:53		129190	
alden-mp.hiof.no	bergen-mp.uib.no	2016-02-12 21:25:53		129160	
lesund-mp.hials.no		2016-02-12 21:25:53		129160	
	bergen-mp.uib.no				
orde-mp.hisf.no	bergen-mp.uib.no	2016-02-12 21:25:53		129170	
unnskapsv-mp.hioa.no	bergen-mp.uib.no	2016-02-12 21:25:53		129180	
jovik-mp.hig.no	bergen-mp.uib.no	2016-02-12 21:25:53		129160	
il32-mp.hioa.no	bergen-mp.uib.no	2016-02-12 21:25:53		129160	
tnu-mp.ntnu.no	bergen-mp.uib.no	2016-02-12 21:25:53		129190	
olde-mp.hiMolde.no	bergen-mp.uib.no	2016-02-12 21:25:53		129170	
tavanger-mp.uis.no	bergen-mp.uib.no	2016-02-12 21:25:53		129160	
tord-mp.hsh.no	bergen-mp.uib.no	2016-02-12 21:25:53	1455312353.767847	129130	
ogndal-mp.hisf.no	bergen-mp.uib.no	2016-02-12 21:25:53	1455312353.768175	129180	
augesund-mp.hsh.no	bergen-mp.uib.no	2016-02-12 21:25:53	1455312353.768636	129170	
ergen-mp.uib.no	alesund-mp.hials.no	2016-02-12 21:25:53	1455312353.770081	550	
ergen-mp.uib.no	fredrikstad-mp.hiof.no	2016-02-12 21:25:53	1455312353.770102	550	
ergen-mp.uib.no	grimstad-mp.uia.no	2016-02-12 21:25:53	1455312353.770111	550	
ergen-mp.uib.no	halden-mp.hiof.no	2016-02-12 21:25:53		550	
ergen-mp.uib.no	kristiansand-mp.uia.no	2016-02-12 21:25:53		550	
ergen-mp.uib.no	kunnskapsv-mp.hioa.no	2016-02-12 21:25:53		550	
ergen-mp.uib.no	molde-mp.himolde.no	2016-02-12 21:25:53		550	
ergen-mp.uib.no	oslo-mp.uio.no	2016-02-12 21:25:53		550	
ergen-mp.uib.no	porsgrunn-mp.hit.no	2016-02-12 21:25:53		550	
ergen-mp.uib.no	stavanger-mp.uis.no	2016-02-12 21:25:53		550	
redrikstad-mp.hiof.no	bergen-mp.uib.no	2016-02-12 21:23:58		310	
rimstad-mp.uia.no	bergen-mp.uib.no	2016-02-12 21:37:58		310	
ristiansand-mp.uia.no	bergen-mp.uib.no	2016-02-12 21:37:58		310	
alden-mp.hiof.no	bergen-mp.uib.no	2016-02-12 21:37:58		310	
innskapsv-mp.hioa.no	bergen-mp.uib.no	2016-02-12 21:37:58		310	
ime.hint.no	5 .			420	
	bergen-mp.uib.no	2016-02-12 21:37:58			
augesund-mp.hsh.no	bergen-mp.uib.no	2016-02-12 21:37:58		300	
rammen-mp.hibu.no	bergen-mp.uib.no	2016-02-12 21:37:58		820	
romso-mp.uit.no	bergen-mp.uib.no	2016-02-12 21:37:58		410	
lesund-mp.hials.no	bergen-mp.uib.no	2016-02-12 21:37:58		420	
orde-mp.hisf.no	bergen-mp.uib.no	2016-02-12 21:37:58		420	
jovik-mp.hig.no	bergen-mp.uib.no	2016-02-12 21:37:58	1455313078.364670	410	

TTL change

- TTL may change when routing changes
- Crude instrumented to log remaining TTL
- Most days have no change in end TTL
- Seen changes 10 times a day +-1

Presentation

- Log incidents/gaps to Elasticsearch
- Graph sum and count of gaps
 - Variation over time
 - If total indendable or not
 - Independability in PPM because networks are very stable
- Search for combination of parameters

UNINETT

Status

- Contribution to 2 PHD's
- Separate congestion from other failures
- Find a indicative measure for reliability?

•

- UNINETT operational service
- International
 - Brasil, Auckland, Zurich, Copenhagen, Stockholm, Trondheim
 - Measure Geant?
 - More partners anyone ?

Thanks

- Don't ask for software yet
- Overall http://drift.uninett.no/dragonlab/
- Publications: https://openwiki.uninett.no/dragonlab:publ

UNINETT monitoring infrastructure

Calibrating linux timestamping

- Crude reads udp measurement packets and logs to disk
- Problem: input udp packet loss
- Extending IO-buffer did not help
- Discovered udp buffer overflow
 - Kernel write blocked for .5 seconds every ~ 30 seconds
 - to flush to disk?
- Increase input udp buffers and monitor to catch overruns
 - Induced jitter still problem
- Buffer output = fewer writes
- Forking into read and write process and non-blocking write on pipe
- Kernel timestamp per packet
- Pcap pick up packet in IO-buffer

Jitter in Linux networking with crude

tter(us)	Lowla	tency kerne	l laptop	No	ormal kern	al fact mach	ino
tter(us)				Normal kernel fast machine			
tter (us)	Jitter sdv	Jitter max	Loss %	Jitter	Jitter sdv	Jitter max	Loss%
3.6	120.0	253356.0	0.12	3.4	8.6	4363	0
3.6	15.0	32906.3	0.06				
50.0	39.4		2.1	50.0	39.6	4066	0
50.0	39.7		0.6				
6.3	5.6		2				
5.9	6.3	1024	0	2.8	8.1	4076	0
7.1	7.4	3462	410	3.1	6.3	1029.0	30
50.0	39.5	4039.0	0				
3.9	5.9	922.0	1.2				
3.2	5.8	672.1	0				
				0.0	0.0	0.7	0
				0.0	0.0	1.8	0
	3.6 3.6 50.0 50.0 6.3 5.9 7.1 50.0 3.9	3.6 120.0 3.6 15.0 50.0 39.4 50.0 39.7 6.3 5.6 5.9 6.3 7.1 7.4 50.0 39.5 3.9 5.9	3.6 120.0 253356.0 3.6 15.0 32906.3 50.0 39.4 50.0 39.7 6.3 5.6 5.9 6.3 1024 7.1 7.4 3462 50.0 39.5 4039.0 3.9 5.9 922.0	3.6 120.0 253356.0 0.12 3.6 15.0 32906.3 0.06 50.0 39.4 2.1 50.0 39.7 0.6 6.3 5.6 2 5.9 6.3 1024 0 7.1 7.4 3462 410 50.0 39.5 4039.0 0 3.9 5.9 922.0 1.2	3.6 120.0 253356.0 0.12 3.4 3.6 15.0 32906.3 0.06 50.0 39.4 2.1 50.0 50.0 39.7 0.6 0.6 6.3 5.6 2 0.2 5.9 6.3 1024 0 2.8 7.1 7.4 3462 410 3.1 50.0 39.5 4039.0 0 0 3.9 5.9 922.0 1.2 0 3.2 5.8 672.1 0 0.0	3.6 120.0 253356.0 0.12 3.4 8.6 3.6 15.0 32906.3 0.06 39.6 50.0 39.4 2.1 50.0 39.6 50.0 39.7 0.6 0.6 0.6 0.6 0.0 <td< td=""><td>3.6 120.0 253356.0 0.12 3.4 8.6 4363 3.6 15.0 32906.3 0.06 39.6 4066 50.0 39.7 0.6 4066 4066 50.0 39.7 0.6 4066 4066 5.9 6.3 1024 0 2.8 8.1 4076 7.1 7.4 3462 410 3.1 6.3 1029.0 50.0 39.5 4039.0 0 4039.0 0 4039.0 0 0 0.0 0.0 0.7</td></td<>	3.6 120.0 253356.0 0.12 3.4 8.6 4363 3.6 15.0 32906.3 0.06 39.6 4066 50.0 39.7 0.6 4066 4066 50.0 39.7 0.6 4066 4066 5.9 6.3 1024 0 2.8 8.1 4076 7.1 7.4 3462 410 3.1 6.3 1029.0 50.0 39.5 4039.0 0 4039.0 0 4039.0 0 0 0.0 0.0 0.7

Jitter in linux timestamps

- Memory buffering helps jitter
- Forking and non-blocking write to pipe has high jitter due to overhead in extra process switches
- Kernel udp timestamp or pcap timestamp has lowest jitter
- Kernel timestamp is an extra kernel call
- Increase driver buffer and udp-buffer prevent packet loss
- Low latency kernel helps a bit on jitter variation

