
Computing Models for Processing Streaming Data from DOE Science

Graham Heyes – Jefferson Lab

Topics

• Definition of streaming data
• The current dominant data processing model
• The need for a new approach
• Data Streaming as a disruptive model
• Science use cases
• Computing models
• Hardware architectures
• Data steering
• Summary

2

What is streaming data?

• For the purposes of this talk streaming data is:
－Data that is generated continuously by many data sources, which typically send data

records simultaneously in a time ordered sequence
－Data that needs to be processed sequentially and incrementally on a record-by-record basis

or over sliding time windows and used for a wide variety of analytics including correlations,
aggregations, filtering, and sampling
－Data that is typically considered to be “in motion” from a source through various processing

stages
－Data that typically has some time sensitivity or criticality requiring prompt processing

• To prevent backup as new data arrives
• To steer the data source
• To respond to events in real-time

• Streaming data formats typically have a metadata wrapper for each record that contains
－Data type, data source, position of the record in the stream

3

Bound an unbound data streams

• A bound data stream is finite stream where each record is well defined and the same format
－ Typically Bound data has a known ending point
－ A data taking run for an experiment is a bound stream of data
－ A YouTube clip is a bound stream of video frames

• Unbound data is unpredictable, infinite, and not always sequential
－ Example continuous monitoring of an instrument looking for rare events

• There is no concept of a run, the duration is effectively infinite
• The events occur at random
• The events can be of randomly varying size. Event A could take longer to acquire or process than event B and so the order in the

stream becomes B then A where the order of occurrence was A then B

• An unbound stream of bounded streams is possible (binge watching YouTube)

• How does this data type fit into existing computing models? Is something different needed?

4

Current dominant data processing model for experimental science

• Data is acquired by online workflows and processed by offline workflows
－These are usually decoupled with significant time period between acquisition and processing

• Between online and offline data is stored in a hierarchical storage system, typically files in a
Posix filesystem

• The batch processing model dominates offline data processing, it relies on the need to
repetitively process many thousands of files of data
－Typically, a workflow manager retrieves files from storage and queues up batch jobs to process

them
－Jobs are managed by a batch system (SLURM) and executed when resources become available

• Advantages are
－Automation of workflows – launch processing of thousands of files
－Simplicity – each job is relatively independent of its peers
－Efficient use of resources – jobs run when resources are available.
－Assigning a range of priorities can keep a cluster busy without impact on high priority jobs

• Does this model fit streaming data? Statement: Batch processing is not a good fit

5

Scenario 1 – Write it to a file and sort it out later

• In this scenario the data streams terminate in a process that writes
the records into one or more files

• Simple to set up but hard to manage and optimize if there are many
parallel streams
－One stream per file gives parallelism but potentially lots of small files
－Aggregate streams and write all data to the same file, potential

bottlenecks
－What does a file represent? – varies by use case

• Unit of time?
• Unit of data?

－How to handle cases where data spans file boundaries?
－File management – what deletes files so that the storage doesn’t fill?
－Batch system starts jobs when resources become available, this is

non-deterministic.
• Hard to implement real-time or even near-real-time processing

• This is a workable solution but making it work loses many benefits
of streaming data

6

Storage
System

Batch System

Job
Stream
Writer

Job

Streaming
Source

Scenario 2 – Start batch jobs that connect to streaming data sources

• In this scenario the data streams connect to jobs in the batch
system directly. Streaming data all the way
－The batch system starts the jobs when resources are available
－These jobs must remain allocated for the duration of the

experiment
－Only works if the data is streaming over a network – otherwise

need to allocate specific nodes with custom hardware
－Needs an external orchestrator

• Which nodes are running what?
• Which data goes where?
• Starting, stopping, monitoring, recovery

－Unless running on a dedicated node the job has no control over
what else is running on the node

• Reliability?
• Performance?

• This is a viable solution, but making it work efficiently requires
sidelining the batch system except at initial startup
－It doesn’t meet the definition of batch processing

7

Batch System

Job

Streaming
Source

Job

Summary comparison of batch processing and stream processing

8

Data stream
Data Center

Process Continuously

Updated in real-time

Data Batch
Updated when job runs

Data Center

Process When Job Runs

Data stream

Batch jobs only run when resources are available and, typically limited duration. Possible contention between jobs
on the same node. Data is no longer streaming but sorted into batches. Results ready when job ends.

Batch system only used to start the processing. Must allocate resources for duration of experiment. Ideally data flow
can’t stop so guaranteed service quality is needed. Results update in real-time.

What models are a good fit?

Data Streaming as a disruptive model

• Instead of trying to force streaming data processing to conform to a pre-existing model,
like batch processing, treat it as a disruptive model in its own right.
－Approach followed by Amazon, Google, Netflix, etc.

• Key components:
－Flexible data integration: The ability to transport data in the format required, regardless of

whether the data is structured or semi structured, direct or customized, static or changing
－Data inference: Make it easy to map data and control how it is processed
－Code engines: The ability to embed code to enrich and cleanse data, create alerts, and

detect anomalies in stream in real time
－Live monitoring: Real-time visibility into data streams for monitoring behavior, identifying

potential discrepancies, and debugging data records
－Pipeline transparency: Provides continuous views of data in motion and notifications that

allow users to view incoming events, monitor throughput and latency, and identify errors in
real time.
－Agility: The ability to dynamically expand or contract and migrate allocated resources.
－Support for heterogeneity: The ability to allocate a tailored resource unconstrained by

predefined hardware choices
• How does it apply to science?

9

Science use cases

Any good computing model is driven by use cases that present challenges that it must
solve. Here are four to consider
1. Time critical workflows
2. Data driven workloads
3. Distributed data sources
4. Complementary data sources

10

1) Time Critical Workflows

• Across a range of science programs, experiments follow time-critical use patterns
－Success of the science depends upon data being processed within a specified time after

acquisition
－Examples:

• Real time data filtering
• Processing a data sample to inform instrument calibration stabilization
• Data quality monitoring
• Real time processing to

－ Reduce data archive requirements – smart data reduction
－ Steer experiments – set run conditions based on last run
－ Provide input to AI/ML, inference engines, digital twin models

• The key features to guarantee success are
－timing of data delivery to compute resources
－timing and continuity of compute resource availability

• Uptime and quality of service
－timing of real-time feedback delivery

11

Data record1

Data Center

Process

Data stream

Data Source

Instrument

Science

2) Data driven workload

• The scale of computing resource required for an experiment
is driven by data rate and complexity
－NP and HEP:

• Processing time is a function of detector and event complexity as
well as the science being studied

• Scale of compute resource needed can vary depending on data
taking conditions
－ It is frequently hard to guess in advance (overestimates are as bad

as underestimates)
－Light Sources:

• Data complexity and rate varies between beamlines and, for
individual beamlines, from sample to sample

• Relatively simple sensors with high sample rates
－ Low complexity simplifies processing, but data rate is problematic

• Complex sensors like high-rate cameras
－ Data is complex AND data rates are high

• Key to success is an adaptive system that can expand or
contract as the workload fluctuates.

12

www.apc.com

www .apc.com

ESC

?

S ta tu s

Ch e ck
L o g

M i n o r
A l a rm

Ma j o r
A l a rm

www .apc.com

ESC

?

S ta tu s

Ch e ck
L o g

M i n o r
A l a rm

Ma j o r
A l a rm

www .apc.com

ESC

?

S ta tu s

Ch e ck
L o g

M i n o r
A l a rm

Ma j o r
A l a rm

Do I need a laptop or
Supercomputer

3) Distributed data sources – NP and HEP

• Very familiar to NP and HEP – detectors are composed
of sub-detectors, that in turn are groupings of individual
detector channels
－Data sources are spread over a volume of space
－Also fold in data from other sources, accelerator,

beamline, etc.
• Typically, this is dealt with online by an “Event Builder”

that combines data records from various detectors for
the same interaction into an “event”
－This can be a serious bottleneck and affect data flow

stability
• Streaming data in parallel to a computing resource

allows deferral event building until the data is in the
data center.
－Building can happen in parallel

• Key takeaway is that streaming data processing is a
natural fit, distributed is in the definition of streaming
data

13

Counting house

DAQ

Data Source

Instrument

Data Source

Instrument

Data Source

Instrument

Data Center

Workflow
Manager

Data Center

Process

Data Center

Process

Data Center

Process

Counting house

Data Source

Instrument

Data Source

Instrument

Data Source

Instrument

Data Center

Orchestrator

Data Center

Process

Data Center

Process

Data Center

Process

DAQ

3) Distributed data sources and streaming - generalized

• Event Building, on the previous slide, is an example of real time data sorting
－In the diagram below colored counters are sorted into boxes
－In Event Building the color represents the time that the data was taken, with counters from different

data sources. The task is to sort data from the same time from different sources so they can be
processed together

• An alternative is to use ML to recognize the ”color” and group by reference
－In this simple case ML is not really needed but much more complex sorts could be imagined that

do
• Streaming data formats provide access to rich metadata that is ideal for enabling rapid real time

sorting or selection of data of interest

14

RED

GREEN

BLUE

RED BLUEGREEN

SORT

INFER

4) Complementary data sources

• In some fields observational or experimental data is
combined from completely different but complementary
sources
－NASA and NOAA combine satellite data with ground

radar, wind gauges, temperature sensors
－Astronomy combines radio, optical and IR images
－Light sources use data from one beamline to calculate

configuration settings to simultaneously study the same
material in another beamline

• There is also interest in running simulation in real-time
using models informed by complementary
measurements
－Example, scan a sample to determine shape and

structure, simulate interaction with beam using real shape
and structure, compare with experiment in real time to
inform next run

15

Frameworks implementing streaming data models

• Streaming data is a hot topic – commercial and open-source solutions exist
－Amazon

• Kenesis - ingest, buffer, and process streaming data in real-time
－Apache

• Flume - simple and flexible architecture based on streaming data flows, aimed at log data
• Kafka - open-source distributed event streaming platform
• Flink - A framework and distributed processing engines for stateful computations over unbounded

and bounded data streams.
• Apex - batch and stream processing using Hadoop’s data-in-motion architecture by YARN.

－ASCR – several initiatives, for example research in streaming data reduction
－Also, highly tailored solutions from national labs, CERN, etc

• Question: Innovate or integrate?
－A little bit of both
－Third-party products are evolving
－Some likely never a good fit
－Perfection is the enemy of good enough

16

Processing models

• Most of the solutions are fundamentally similar and based on a distributed parallel
model
－Event driven engines are networked by data pipelines
－Data between engines is “in flight” as much as possible
－Data lakes – unstructured “pools” of data

• Provide temporary buffering of data to rate match application components
• Time sync streaming data to allow cross stream data queries – earlier slide on sorting

• Stream processing engines are runtime libraries which help developers write code to
process streaming data, without dealing with lower-level streaming mechanics.

• There are two major types of processing engines.
－Compositional Engines
－Managed Declarative Engines

17

Compositional Engines

• In compositional stream processing engines,
developers define the Directed Acyclic Graph
(DAG) in advance and then process the data. This
may simplify code, but also means developers
need to plan their architecture carefully to avoid
inefficient processing.

• Challenges: Compositional stream processing are
considered the “first generation” of stream
processing and can be complex and difficult to
manage.

• Examples: Compositional engines include
Samza, Apex, and Apache Storm.

• Developer builds the application from a kit of parts
according to a plan

18

Declarative Engines

• Developers use declarative engines to chain
stream processing functions. The engine
calculates the DAG as it ingests the data.
Developers can specify the DAG explicitly in
their code, and the engine optimizes it on the
fly.

• Challenges: While declarative engines are
easier to manage, and have readily-available
managed service options, they still require
major investments in data engineering to set
up the data pipeline, from source to eventual
storage and analysis.

• Examples: Declarative engines include
Apache Spark Streaming and Flink.

• The engine assembles the network based on
incoming data or optimizes an existing net

19

spark
.readStream
.select($"value".cast("string").alias("jsonData"))
.select(from_json($"jsonData",jsonSchema).alias("payload"))
.writeStream
.trigger("1 seconds")
.start()

Streaming optimized hardware architecture

• The software architectures discussed in the last few slides
allow the creation of managed streaming applications
－Developers provide code to plug into event driven engines
－Engines are assembled into an application using network

graphs
－A management layer optimizes data flow and performance

on the fly

• What sort of hardware architecture would optimally
support these applications?
－It must support

• Guaranteed uptime, performance and service quality
• Data flow optimization on the fly
• Applications of (somewhat) arbitrary scale on heterogenous

hardware
• Integration of AI/ML and other data science techniques
• Integration of novel technologies (adapt to future needs)

20

Disaggregation and reassembly

• Imagine a computing resource with all the right
parts for a particular streaming application but
not necessarily in the right configuration

• What if we could disaggregate individual
nodes into a network of parts and reassemble
something that is a better match to our
application?

• Technology roadmaps from silicon vendors
show inter CPU and GPU networking with
coherent memory is either coming or already
here

• This would allow adaptive tailoring of a
hardware architecture to match a streaming
application

• How do you reconfigure hardware in a running
application?

21

MEMORY

CPU GPU

FPGA

MEMORY

CPU GPU

FPGA
MEMORY

MEMORY

CPU

CPU

GPU

GPU

FPGA

FPGA

MEMORY

MEMORY

CPU

CPU

FPGA

FPGAGPU

GPU

Data flow steering

• An adaptive dynamic architecture must be able to:
－Reroute data that is in flight when the system

architecture reconfigures
－Allow remote data sources to be agnostic of the

destination hardware configuration
－Provide robustness while preserving agility and

performance
• IP based networking identifies hardware endpoints

via IP addresses. Data is routed according to where
it needs to go

• A streaming data application routes data according
to what kind of data it is and where it came from.

• A low-level network protocol to implement this does
not exist (yet) but can be emulated

22

• Packets are sent to the address of B
• A and B are IP addresses

• Packets are routed to “b” based-on source
(a), data type and, (optionally) sequence
number

• “a” and “b” are logical identifiers not IP
addresses

IP-B
3

Data stream

Node BNode A IP-B
2

IP-B
1

Data stream

a
3

a
2

a
1

Destination
bSource a

Prototype dynamic steering of streaming data

• The ESnet Jlab FPGA Accelerated
Transport project is an example
－Streaming data format contains metadata

describing the data
－Using standard IP based network all traffic

is directed to an FPGA device
－Firmware modifies IP packet headers to

reroute the data based on what kind of
data it is and what kind of destination it
should stream to

• Initial implementation has static translation
tables to implement data distribution
schemes
－Round robin, sorting by time or source

• Goal is dynamic intelligent steering

23

Why is Jefferson Lab giving this talk?

• We have many years of experience handling data from a diverse and sometimes rapidly
changing set of experiments

• Nuclear physics experiments at JLab are transitioning to a streaming data acquisition
model

• The EIC project, in partnership with BNL, will use streaming data acquisition
• We have real problems to solve, and it is of greatest benefit to the broad DOE science

community to try to develop solutions that can be shared
• We now have ASCR funding for a follow-on project to EJFAT to extend towards the

instrument at the data source end and closer to the silicon at the data center
• We have an LDRD to investigate multi-site workflows
• Partnerships with NERSC, BNL, and SLAC
－BNL for EIC but also NSLS-II
－SLAC for light source data
－NERSC for workflow transition between data centers

24

Summary

• In this talk topics were outlined, and questions asked:
－Definition of streaming data

• Does it fit into existing computing models? Is something different needed?
－ The dominant data processing model for experimental science

• Does that model fit streaming data?
－Use of the batch model to process streaming data

• Workable but not a good fit
• What models are a good fit?

－Data Streaming as a disruptive model
• How does it apply to science?
• Example use cases

－Software frameworks implementing streaming data models
－Streaming optimized hardware architecture

• How do you reconfigure hardware in a running application?
• Data flow steering

• Processing streaming data is a “hot topic” in industry, computer science research, as well as current
and future trends in DOE funded science

• As with all “hot topics” the right balance must be found between innovation and implementation –
there’s a lot out there when you start to look!

25

