

#### **Network Support For Large Scale Science**

Eli Dart Energy Sciences Network (ESnet) Lawrence Berkeley National Laboratory

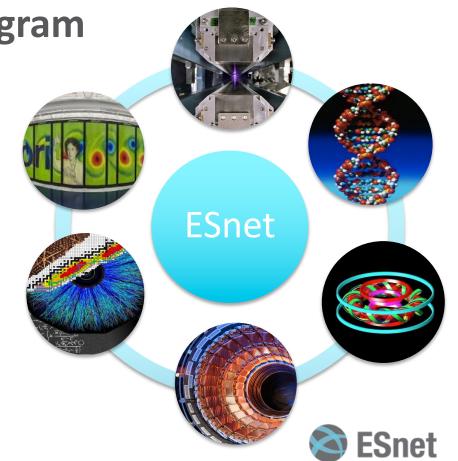
SIG-NGN

Prague, CZ

20 April, 2023






### **Framing and Context**

- ESnet is a science network first
  - We serve enterprise needs too (e.g. commodity/cloud transit)
  - Lab business operations important, science mission front of mind
- Multiple operational mechanisms to understand science we serve
  - Interaction with Lab network managers
  - Performance/design/troubleshooting engagements with scientists
  - Learning from our friends and peers
- Formal requirements program programmatic foundation



### **ESnet Requirements Program**

- Part of ESnet's formal governance structure – DOE program effort
- Formal interaction between ESnet and the six DOE/SC program offices
- Regular interaction with each program office every 3 years
- Collect written information from scientists, then discuss it with them
- Results in formal reports: <u>www.es.net/requirements</u>

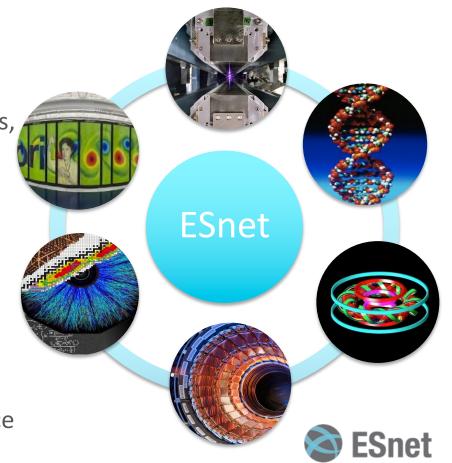


### **ESnet Requirements Program Case Studies**

- ESnet attempts to understand the facilities and major projects of each program office, primarily from a networking and data perspective
  - Derive network requirements from the conduct of the science
  - We collect this information in "case study" narratives
- Each science collaboration in the review prepares a case study containing a data-centric narrative describing their science, including quantitative information
  - Three time scales:
    - 0-2 years current budget envelope
    - 2-5 years current technology envelope
    - 5+ years strategic planning



### **Requirements Review Case Studies**

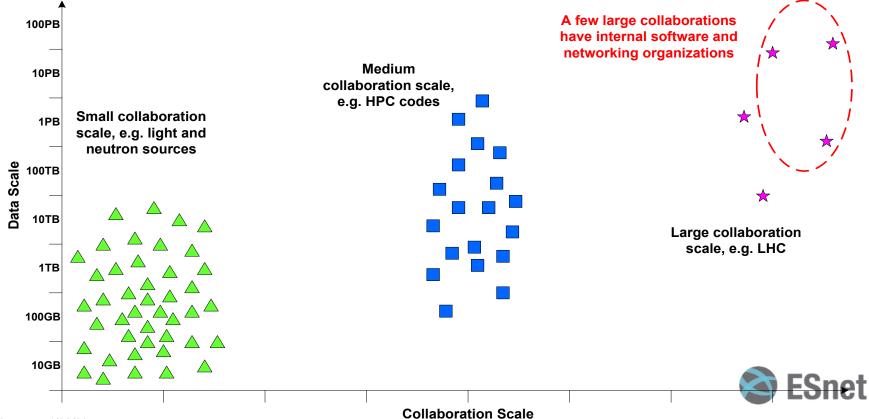

Requirements case studies evaluate multiple aspects of science programs

- Major science experiments and facilities, both in operation and planned.
- The process of science used for knowledge discovery, and including scientists' interactions with the instruments and facilities.
- The volume of data produced now, and anticipated in the future, with an emphasis on geographical location of where the data must be shared, computed and/or stored.
- The current technology capabilities (network, computation, storage, and software stack) used by each science collaboration/facility as well as any planned upgrades, additions or improvements.



### **Strategic Context**

- Requirements program facilitates conversations between ESnet, our sites, our program management, and the other DOE program offices.
- We learn from each other
- Not only do we gain insight into the data strategy of programs, we can teach programs and scientists about the value of ESnet
  - Best practice, design patterns (Science DMZ, DTNs, perfSONAR)
  - Benefits of using high-performance networking in effective ways




### **Several Benefits To A Formal Program**

- ESnet, our program managers, our science constituents, and their program managers are required to sit down and talk to each other
  - It is hard to overstate the value of these interactions
  - Everyone in the same room at the same time: common discussion of needs, and the solutions ESnet undertakes to meet those needs
- The "sociology" of different science collaborations, facilities, and fields is superimportant
  - Astronomy is different from Fusion which is different from Genomics, ....
  - For us to be successful we need to meet the scientists where they are, which is different for each field and facility, sometimes for each collaboration




### **Rough User Grouping By Data Set Size**



# **Rough User Grouping By Data Set Size**

 $\mathbf{x}$ 

 $\bigstar$ 



# **Rough User Grouping Discussion (1)**

- The chart is a crude generalization
  - It is not meant to describe specific collaborations, but to illustrate some common socio-technical aspects of many collaborations
  - Data sets are constantly growing (growth arrows on second slide)
- Small collaborations
  - Light sources, microscopy, nanoscience centers, etc.
  - Typically small number of scientists per collaboration, many many collaborations
  - Individual collaborations typically rely on site support and grad students
  - This group typically has difficulty moving data via the network
  - Science DMZs and Data Transfer Nodes (especially if deployed with Globus)
    are a big win, multi-facility workflow efforts are building infrastructure



# **Rough User Grouping Discussion (2)**

- Supercomputer simulation science
  - Climate, fusion, bioinformatics, astrophysics simulations, etc.
  - · Larger collaborations, often multi-site
  - Reliant on supercomputer center staff for help with network issues, or on grad students
  - This group typically has difficulty transferring data via the network, unless DTNs have been deployed properly (e.g. Science DMZ + Globus)
- Large data instrument science (HEP, NP)
  - Very large collaborations multi-institution, multi-nation-state
  - Collaborations have their own software and networking shops
  - Typically able to use the network well, in some cases expert (LHC)
  - These groups often deploy their own stack (Rucio, FTS, HTTP-TPC, XRootD, etc) instead of working for interoperability with many different science collaborations



### So What? What Have We Learned?

- The LHC experiments are big (obviously!)
  - But what does that mean?
- Almost every non-LHC collaboration needs our help, but in different ways
  - Some need is about understanding networks
  - Some need is about understanding systems
  - Some need is other stuff
- Science collaborations will not abstract their workflows for us
- So let's unpack this...



### **The LHC Experiments**

- ESnet needs (and has) a multi-faceted, strategic engagement effort with the LHC experiments
  - Started before Run 1, in place today, continuing for the future
  - Ongoing participation in collaborations/groups where it makes sense, proactive action where needed, ability to change/adapt over time
  - Examples: SENSE/Rucio collaboration, Tier2 engagement in the US, strategic transatlantic connectivity program, perfSONAR
- It's important to spend the people cycles to be part of the collaborations. Otherwise, networking doesn't have a seat at the table, and everyone loses



### **Non-LHC Collaborations and Experiments**

- Many non-LHC science groups do not have in-house networking expertise
  - Importantly, the senior staff who do strategic planning for experiments or for a field of research do not have networking expertise in the general case
    - It's "IT" or "Cloud" to them
- Many non-LHC groups do not have in-house expertise with high performance data systems (DTNs, etc.)
  - This is why ESnet has the fasterdata knowledgebase (could it be better? Always! We welcome contributions)
- There is a huge opportunity to help our constituents make better use of our networks



#### ITER

- Global collaboration building the world's largest Tokamak in France
  - Member states: China, EU, India, Japan, Korea, Russia, USA
  - Pursuing connectivity to GEANT, so data likely accessible via GEANT
- Data model different aspects
  - ITER has said there will be no interaction with plasma control via external networks
  - Exabyte data scale by 2035
  - Every member state is entitled to a full copy of all the data
    - 2PB/day capacity per member state
    - 3 months of disk buffer, then data migrated to tape (get it while it's hot!)
    - Transfers via GEANT
    - Transfers starting approx. 2028, fast ramp to 2030
- Data challenge activities beginning later this year
- Schedule update coming soon



### **Climate Science**

- Note well: this is \*not\* weather! Climate and Weather are different
- Large (many petabytes) of climate model output distributed worldwide
  - Major data repositories in US, UK, France, Germany, Australia, Japan, China
  - 20-30 additional sites
- They need to do periodic transfers to sync their big repositories
- Sometimes they transfer large data sets (e.g. to HPC)



### Cloud

- Cloud is a capability play in many cases
  - Easy API access
  - Always-on or always-available services (e.g. Globus controller)
  - Burst capacity/elasticity (though expensive)
- Our community needs to think hard about what services and capabilities it wishes to keep in-house, especially in terms of computing
  - Ease of use is a primary driver (compute allocation application delay, API vs. CLI, etc.)
  - Security issues many orgs find it easier to write a contract for cloud access than defend their own systems against cyberattack: is this what we want?
- Performance is relevant to topology location, but ease of use/access need not be.
- Our scientists just want to get their work done what does that mean for us?
  - Note that the default over time is that science moves to the cloud if it's easier



#### **In conclusion – ESnet's mission:**



Scientific progress will be **completely unconstrained** by the physical location of instruments, people, computational resources, or data.





# Thanks!

Eli Dart (dart@es.net) Energy Sciences Network (ESnet) Lawrence Berkeley National Laboratory

http://fasterdata.es.net/

http://my.es.net/

http://www.es.net/



