

Security Challenges for High Throughput Data Transfers

0

Ó

0

0

Dr Tim Chown, Network Development Manager, Jisc WISE Meeting – The Cosener's House – 28 Feb 2018

- » There is growing interest in moving research data around the network
 - > Data capture or generation to computing facility, and perhaps back
 - > Remote visualisation
 - > Data replication / distributed storage / backups
 - > To / from cloud
- » Data set volumes are increasing
 - > 100 TB is no longer 'large'
 - Moving 100 TB takes 10Gbps of throughput for 24 hours
- » How do we do this securely, AND with the necessary performance?
 - > This deck has some thoughts on this topic...

» Security embraces many perspectives and methods
 » WISE has no doubt covered many topics at this meeting

» We're not talking here about the more classic security challenges

- > Authentication, authorisation, certificates, etc.
- > Or how to do a GDPR audit!
- » The question to consider here is how do we achieve high throughput on the end-to-end data transfer path, while applying appropriate security measures to the traffic in flight
 - > The path needs to be performant, else the research suffers
 - > Can argue that necessary performance is a requirement

The following table, taken from a publication by ESnet³, shows the *theoretical* throughput required to transfer a given size of data set in a range of example time periods.

	1 Min	5 Mins	20 Mins	1 Hour	8 Hours	1 Day	7 Day	30 Days
10 PB	1,333Tbps	266.7Tbps	66.7Tbps	22.2Tbps	2.78Tbps	926Gbps	132Gbps	30.9Gbps
1 PB	133.3Tbps	26.7Tbps	6.67Tbps	2.2Tbps	278Gbps	92.6Gbps	13.2Gbps	3.09Gbps
100 TB	13.3Tbps	2.67Tbps	667Gbps	222Gbps	27.8Gbps	9.26Gbps	1.32Gbps	309Mbps
10 TB	1.33Tbps	266.7Gbps	66.7Gbps	22.2Gbps	2.78Gbps	926Mbps	132Mbps	30.9Mbps
1 TB	133.3Gbps	26.67Gbps	6.67Gbps	2.22Gbps	278Mbps	92.6Mbps	13.2Mbps	3.09Mbps
100 GB	13.3Gbps	2.67Gbps	667Mbps	222Mbps	27.8Mbps	9.26Mbps	1.32Mbps	309Kbps
10 GB	1.33Gbps	266.7Mbps	66.7Mbps	22.2Mbps	2.78Mbps	926Kbps	132Kbps	30.9Kbps
1 GB	133.3Mbps	26.7Mbps	6.67Mbps	2.22Mbps	278Kbps	92.6Kbps	13.2Kbps	3.09Kbps
100 MB	13.3Mbps	2.67Mbps	667Kbps	222Kbps	27.8Kbps	9.26Kbps	1.32Kbps	0.31Kbps

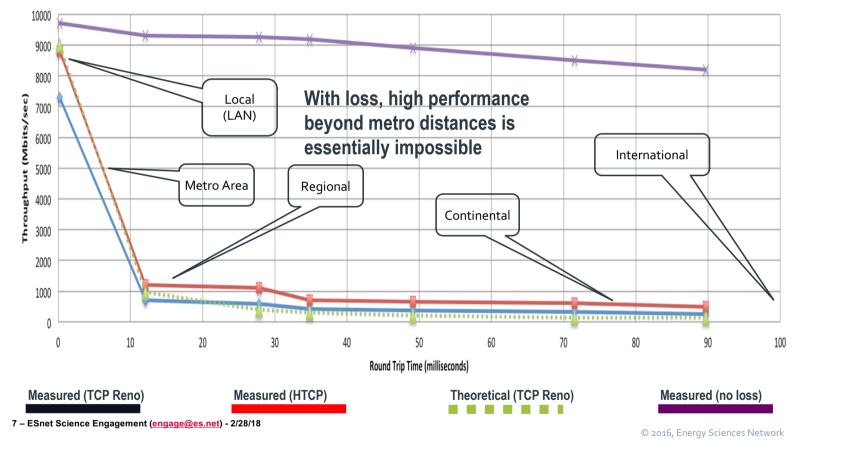
Thus, in principle, if you need to move 100GB in 20 minutes, you will need at least a 1Gbit/s capacity, end to end. Or, if you have a 10Gbit/s link, you can in principle move 100TB in a day (at a rate of 9.26Gbit/s).

» Achieving optimal end-to-end performance is a multi-faceted problem.

» It includes:

- > Appropriate network capacity provisioning between the end sites
- Properties of the local campus network (at each end), including capacity of the external connectivity, internal LAN design, the performance of firewall / IDS devices, and the configuration of other devices on the path
- > End system configuration and tuning; network stack buffer sizes, disk I/O, ...
- > The choice of tools used to transfer data, e.g. scp, Globus, rsync, Aspera, ...
- » To optimise end-to-end performance, you need to address each aspect
 » There will inevitably be a bottleneck somewhere

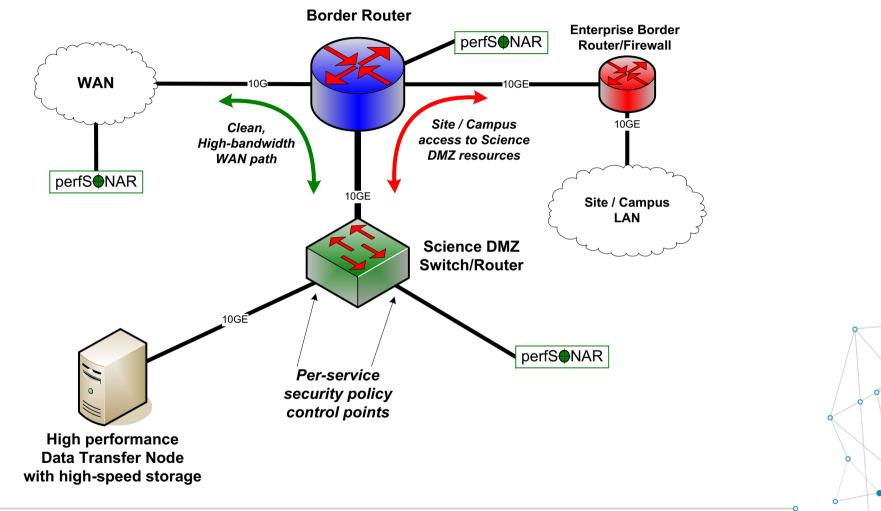
Campus network engineering


- » Question: how to design the local campus network for optimal end-to-end intersite data transfer performance?
- » Problem: An application using TCP will see its performance degrade if packets are lost, with more degradation the higher the path's RTT
 - > Very small loss can have a surprisingly significant impact
 - > Therefore we need to engineer towards zero packet loss
- » Zero loss implies both sufficient capacity and performant network elements
- The challenge is that many campus security appliances, esp. corporate firewall/IDS, are designed for 1000's of small flows, not tens of very large flows, and they can thus drop packets
- » Answer? The Science DMZ

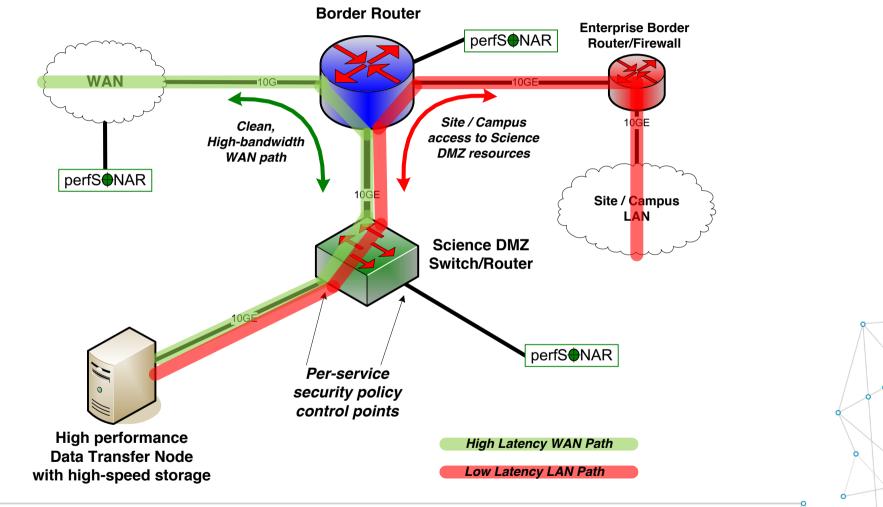
TCP with a small amount of packet loss...

ò

Throughput vs. Increasing Latency with .0046% Packet Loss

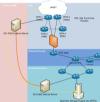


- » ESnet published the Science DMZ 'design pattern' in 2012/13
 - https://www.es.net/assets/pubs_presos/sc13sciDMZ-final.pdf
- » Three key elements:
 - > Network architecture improvements; avoiding local bottlenecks
 - > Network performance measurement
 - > Data transfer node (DTN) design and configuration
- » Also termed a "high speed on-ramp" to the campus storage
 - > Splits the internal and external latency domains
- » The NSF Cyberinfrastructure (CC*) Program funded this model in over 100 US universities:
 - > See <u>https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504748</u>



Science DMZ Design Pattern (Abstract)

Local and wide area data flows



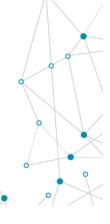
Examples of Science DMZ in use at UK sites

- » There are several examples of sites in the UK that have some form of Science DMZ deployment
- » In many cases the deployments were made without knowledge of the Science DMZ model!
- Science DMZ is just a set of good principles to follow, so it's not surprising that some Janet sites were already doing it, especially the GridPP sites
- » Examples in the UK:
 - Diamond Light Source >
 - JASMIN/CEDA Data Transfer Zone
 - Imperial College GridPP; supports up to 35Gbit/s of IPv4/IPv6
 - > BUT, to realise the end-to-end benefit, both ends need to apply the principles

Problems on the STFC network	TCP Performance	Finding the problem in the Last Mile
Scientific data download speeds from Diamond to visiting user's institutes were inconsistent and slow even though the facility had a 10Gb/s connection from STFC at Harwell.	There are three major factors that affect TCP performance: • Packet size Latency (AKA Round Trip Time) • packet loss	I explained the implications of the pack loss to the STFC network administrator STFC allowed me to place a 3 rd PerfSo server connected directly to the Harwel site main router.
The limit on download speeds was delaying post-experiment data analysis by academics at their home institutes.	All three are interrelated. The <i>Mathis</i> _[1] equation predicts the maximum transfer speed of a TCP link.	Tests with this extra server allowed us t pin-point the STFC firewall (the "last mile" of the link) as the source of the insidious packet loss.
How did we locate the problem? We ran network tests using PerfSonar, a suite of tools for testing TCP performance.	$\frac{maximum \ segment \ size}{latency} \times \frac{1}{\sqrt{packet \ loss \ rate}}$	Redesigning the data transfer networ
We set ourselves an initial target of "a stable 50Mb/s over a 10ms path". We tested Diamond's own network by placing PertFooms servers: 1. deep inside the Science network next to where the data is held	How this applies in the real world When a TCP stream encounters packet loss, it has to recover : it starts with a small window and opens it back up again over time. The longer the latency, the longer the feedback loop is for doing this	
 at the edge of our network connected to our main core switch at the University of Oxford Department of Physics, the nearest institute we could test from 	With all other things being equal, the time for a TCP connection to recover from loss goes up as the round-trip time goes up. This is known as the <i>Long Fat Network</i> problem.	50.062 minut dawn Barrins Grupp Lawr an
Initial findings	Packet Loss to Oxford	I redesigned the data transfer network according to an industry-standard mode called the <i>Science DMZ</i> :
Diamond's internal network tested well, with transfers from the Per/Sonar at the Science data storage to the Per/Sonar at the network core switch running at the nawimum possible speed, and with no packet loss. However, low speeds were found when testing over the STFC segment of the network between Diamond's edge and the Physics department at Oxford.	To achieve our initial gale of 50Mb/s over a 10ms path, the tolerable packet loss is 0205% maximum loss according to Mathis.	 I split the latency domains by putti a data transfer server on the edge of Harwell site network I connected the data transfer server straight to the high-speed data stora inside Diamod via a direct fibre I recommended the use of GridFTP which is software that uses multiparallel TOP streams. This means the
These tests showed packet loss which could not support even pessimistic data transfer rates via the STFC site infrastructure	The packet loss between Diamond and Oxford was too small to previously cause	if a packet gets dropped in one strea the other streams carry on the transf while the affected one recovers.
	concern to network engineers, but was found to be large enough to disrupt high- speed transfers over distances greater than a few miles.	Test transfers between DLS and Brookhaven in New York over the new infrastructure now achieve over 2Gb/s between sites!
95.//fastevádza ex net/network-taming http-issues-explained juacket-loss	For more information on scientific data transfer at Diamond, contact Alex White – dex.white@diamond.ac.uk	🔥 diamor

Long Fat Networks And the Last Mile

- » Rationale?
- » It allows for better segmentation of risks, and more granular application of controls to those segmented risks.
 - > Limit risk profile for high-performance data transfer applications
 - > Apply specific controls to data transfer nodes (DTNs)
 - > Avoid including unnecessary risks, unnecessary controls
- » Remove degrees of freedom focus only on what is necessary
 - > Easier to secure
 - > Easier to achieve performance
 - > Easier to troubleshoot
- » Performance is a key requirement; e.g., use efficient ACLs
 - > See <u>https://www.slideshare.net/JISC/science-dmz-security</u> (Kate Mace)


Jisc Other examples of campus network engineering

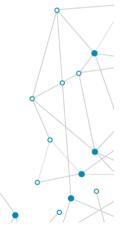
- » Many Janet sites split their external connectivity (their choice...)
 - > e.g., 40G total; 1x10G campus, 1x10G research science data, 2x10G resilience
 - > And then apply Science DMZ principles to the dedicated research data path
 - > Or employ Science DMZ in their data centre
- » The Worldwide LHC Computing Grid (WLCG) has used physical / virtual overlays
 - > LHCOPN (private optical network) / LHCONE (virtual network)
 - > LHCONE implicitly becomes a 'trusted' network
- » But how should campuses cater for multiple data-intensive science disciplines?
 - > Would one new overlay network per research community scale?
- » Some sites are exploring SDN, to direct traffic dynamically and efficiently on campus
 - > The classic on-ramp 'Science DMZ' is a rather static architecture

» ... is another person's research data transfer!

- » What might you see in/out of a campus?
 - > High volume UDP data transfer flows, e.g., Aspera
 - > New protocols, e.g., QUIC (UDP/HTTP2)
 - > 'Smarter' TCP algorithms, e.g., TCP-BBR
 - > Highly parallelised flows, e.g., Globus / Grid FTP
- » Applications behaving this way might seem to be out of profile, and thus potential (D)DoS
 - > Need to keep abreast of application protocol developments
 - > May white-list certain applications / address space

Aside 2: Encryption

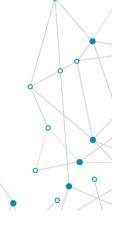
- » If you need to encrypt sent data, this might be implemented by
 - > Pre-encrypting the data
 - > Encryption on the fly as you transmit
 - > Encryption between gateways on the path
- » All these have potential performance issues or limitations
- » Some NRENs offer solutions in this space
 - > e.g., Jisc has Safe Share
 - https://www.jisc.ac.uk/safe-share
 - > But by default only up to 1Gbit/s; higher throughput costs £££
 - > Genomics project data sets can easily be 100-200TB.



» Important to have telemetry on your network

- » The Science DMZ model recommends perfSONAR for this
- » Collects telemetry over time
 - > Throughput, loss, latency, path
 - > Allows retrospective viewing of data
 - > Uses proven tools under the hood such as iperf
- » Can run tests between two perfSONAR systems, or build a mesh

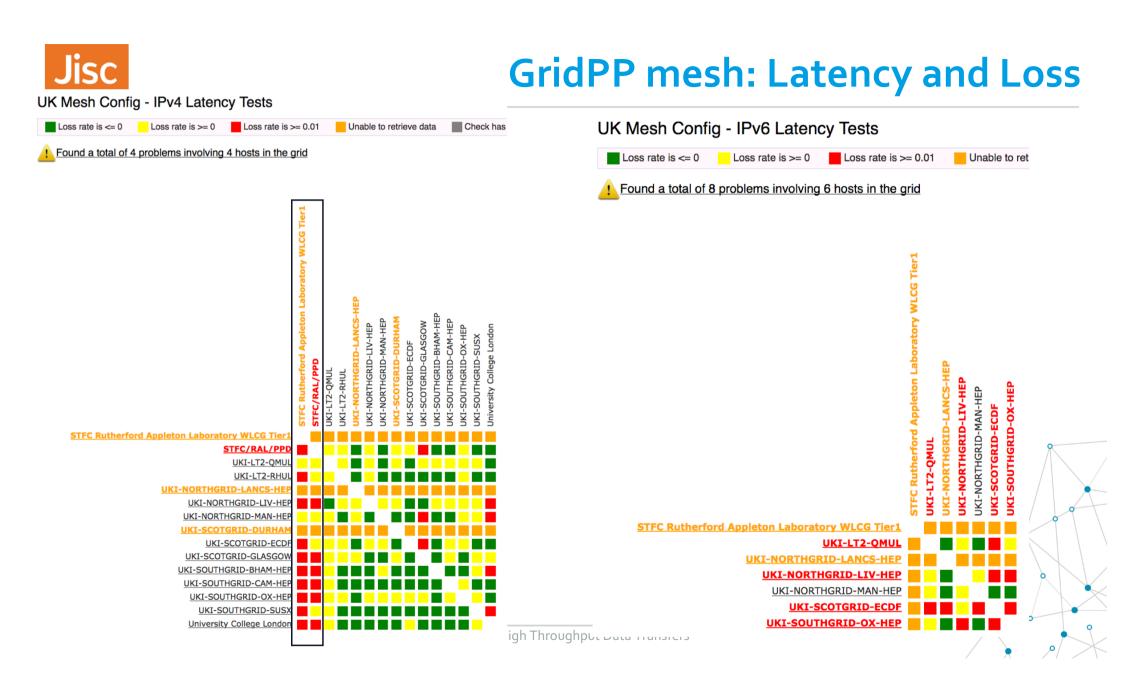
» Helps you assess the impact of changes to your network or systems
» It can highlight poor performance, but doesn't troubleshoot per se
» May indicate impact of security appliances on performance


Janet - London perfSONAR node

	(i) Jisc Services Limited (GB) https://ps-londhx1.ja.net/toolkit/				C Search		☆ 自 ↓ ♠ ♥ ① 🛂 💱 ☰	
	perfS ONAR Toolkit on ps-londhx1-mgmt.ja.net						Log in Configuration ? Help	
Added a Jisc	Ps-londhx1-mgmt.ja.net at 194.83.97.214, 2001:630:3c:f801::6 Organization: Jisc						Host Information (Log in for more info)	
certificate							Details ~	
	Address: London GB (map) Administrator: Duncan Rand (duncan.rand@jisc.ac.uk)					Primary Interface p3p1		
						NTP Synced	Yes	
						Globally Registered	Yes	
Dual-stack	Services				Enable/disable services 🔅	Node Role	NREN, Regional	
DUdI-SLACK	SERVICE	STATUS	VERSION	PORTS	SERVICE LOGS	Access Policy	Public	
	bwcti -	Running	1.6.4-1.el6	4823	View 🖓	Virtual Machine	No	
	esmond -	Running	2.1.1-1.el6		View 🖍	RAM	31 GB	
Possible to set	Isregistration	Running	4.0.1-1.el6		View 🗗	More Info	Details ~	
	meshconfig-agent	Running	4.0.1-1.el6		View 🗗			
up tests	owamp +	Running	3.5.4-1.el6	861	View 🗗	On-demand te	sting tools	
manually, but	pscheduler -	Running	1.0.1.2-1.el6		View 🗗	Reverse ping 🖸		
better to set					Reverse traceroute 🗹			
up a mesh	Test Results (18 Results)			Configure tests 🔅	Reverse tracepath 🗗			
	Search:			Results for the last		Traceroute Visualization C		

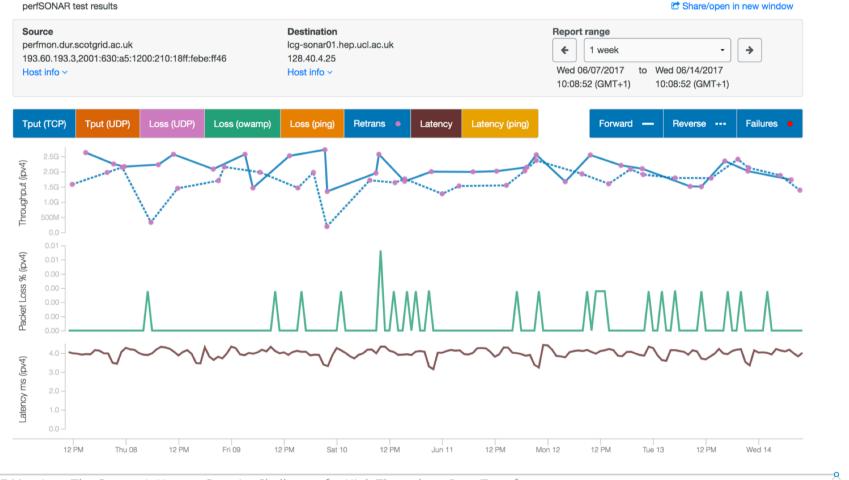
» GridPP = UK Particle Physics computing collaboration

- > UK component of the WLCG (Worldwide LHC Computing Grid)
- » Nineteen sites forming one Tier-1 and four distributed Tier-2 sites
- » Most sites have perfSONAR nodes next to their storage servers
- » They are running a dual-stack mesh
 - > Measure IPv4 and IPv6 performance independently
- » Provides an insight into network performance across the sites
- » Live version:
 - <u>http://ps-dash.dev.ja.net/maddash-</u> webui/index.cgi?dashboard=UK%20Mesh%20Config



UK Mesh Config - IPv4 Traceroute Tests UK Mesh Config - IPv6 Traceroute Tests Number of Paths is <= 1 Number of Paths is >= 1 Number of Paths is >= 2 Unable to retrieve da Number of Paths is <= 1 Number of Paths is >= 1 Number of Paths is >= 2 No problems found in grid No problems found in grid WLCG Tier1 STFC Rutherford Appleton Laboratory WLCG Tier1 JTHGRID-OX-HE NORTHGRID-MAN-Appl KI-NORTHGRID-LIV NORTHGRID-Rutherford SOUTHGRID-IKI-NORTHGRID-LANCS-HEP SCOTGRID FC/RAL/PPD KI-LT2-QMUL JKI-LT2-RHUL -NORTHGRID-MAN-HEI -NORTHGRID-LIV-HEP UKI-SCOTGRID-ECDF UKI-SOUTHGRID-OX-HEP STFC STFC Rutherford Appleton Laboratory WLCG Tier1 JKI-LT2-QMUL STFC/RAL/PPD UKI-LT2-QMUL UKI-LT2-RHUL UKI-NORTHGRID-LANCS-HEP UKI-NORTHGRID-LIV-HEP STFC Rutherford Appleton Laboratory WLCG Tier1 UKI-NORTHGRID-MAN UKI-SCOTGRID-DURHAM UKI-LT2-QMUL UKI-SCO UKI-NORTHGRID-LANCS-HEP UKI-SCOTGRID-GLASGO UKI-NORTHGRID-LIV-HEP UKI-SOUTHGRID-BHAM-HEP UKI-NORTHGRID-MAN-HEP 6 UKI-SCOTGRID-ECDF UKI-SOUTHGRID-OX-HEP UKI-SOUTHGRID-SUSX UKI-SOUTHGRID-OX-HEP University College London

GridPP mesh: Traceroute

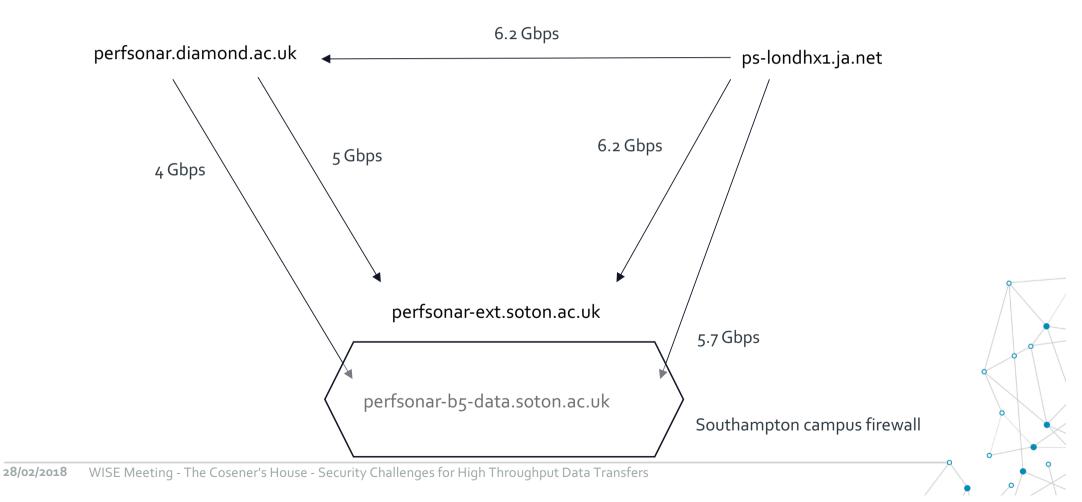


UK Mesh Config - IPv6 Bandwidth Tests UK Mesh Config - IPv4 Bandwidth Tests Throughput >= 900Mbps Throughput < 900Mbps Throughput <= 500Mbps Unable to retrieve da Throughput >= 900Mbps Throughput < 900Mbps Throughput <= 500Mbps Found a total of 5 problems involving 5 hosts in the grid Found a total of 5 problems involving 4 hosts in the grid WLCG Tier1 FC Rutherford Appleton Laboratory BHAM NORTHGRID-MAN-NORTHGRID-LIV-**VORTHGRID-LAN** utherford UTHGRID JKI-NORTHGRID-LANCS-HEP JKI-NORTHGRID-LIV-HEP OTGRID UKI-NORTHGRID-MAN-HEP LT2-RHUL UKI-SCOTGRID-ECDF UKI-SOUTHGRID-0) CI-LT2-QMUL STFC Rutherford Appleton Laboratory WLCG Tier1 STFC/R/ L/PPD UKI-LT2 UKI-LT2-RHUL UKI-NORTHGRID-LANCS-HEP UKI-NORTHGRID-STFC Rutherford Appleton Laboratory WLCG Tier1 UKI-NORTHGRID UKI-SCOTGRID-UKI-LT2-QMUL UKI-SCOTGRID-ECDF UKI-NORTHGRID-LANCS-HEP UKI-SCOTGRID-GLASGOW **UKI-NORTHGRID-LIV-HEP** UKI-SOUTHGRID-UKI-NORTHGRID-MAN-HEP UKI-SOUTHGRID-CAM-HEP UKI-SCOTGRID-ECDF UKI-SOUTHGRID-OX-UKI-SOUTHGRID-SUSX UKI-SOUTHGRID-OX-HEP University College London

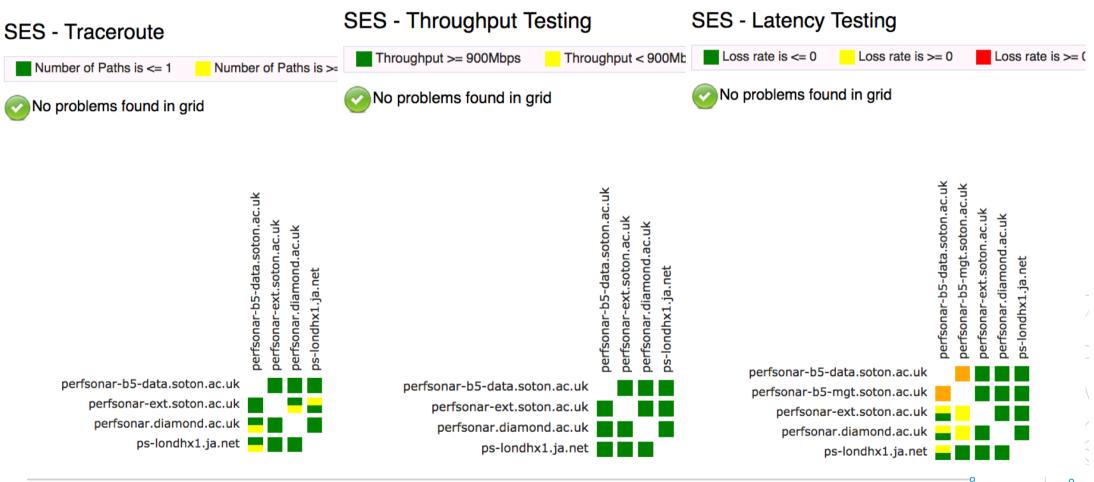
GridPP mesh: Throughput

Jisc perfSONAR – performance visualization over time

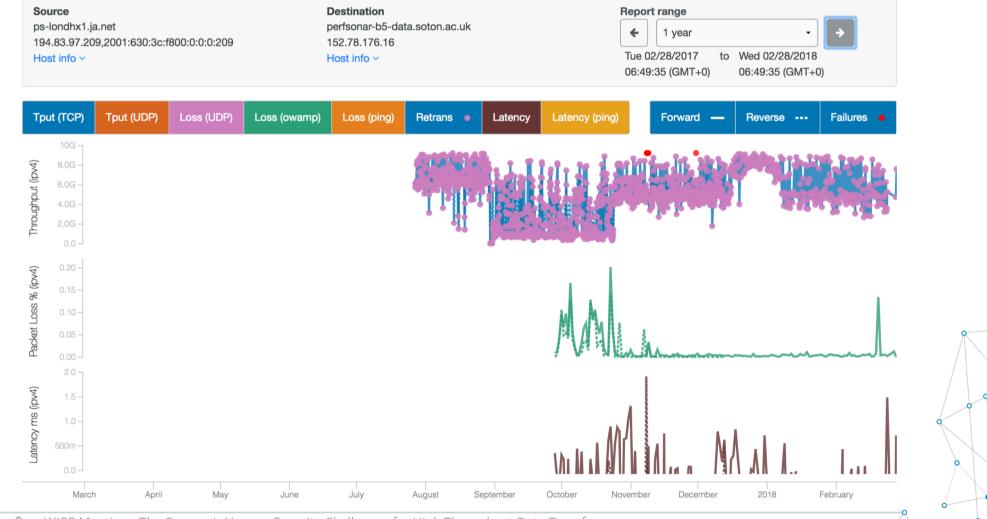
ò


0

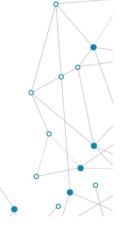
- » Southampton researchers go to DLS to run experiments and collect data which they wish to transport back home
 - > Rather than carrying disks, they ought to be able to use the Janet network
- » Initial work at Southampton involved adopting Globus Connect to transfer files from DLS
- » Achieved a significant improvement up to the then available 1 Gbps
- » Also installed a perfSONAR host (*perfsonar-b5-data.soton.ac.uk*) on campus next to the data storage
- » Network to storage then upgraded to 10 Gbps
- » Later a perfSONAR host (*perfsonar-ext .soton.ac.uk*) was installed at the Southampton border, outside the firewall
- » See http://ps-dash.dev.ja.net/maddash-webui/index.cg


Current observed average throughput

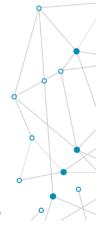
RAL campus



Throughput mesh


Last 12 month view – London -> B5 network

Other examples


- » University wanting to backup data to RAL
 - > Obtaining 300-400Mbit/s
 - Introduced Science DMZ principles
 - > Now sustaining 3-4 Gbit/s
- » University on WLCG; IDS imposed
 - > Was obtaining up to 18Gbit/s
 - > IDS throughput maximum 8 Gbit/s
 - > An example of appropriate application of policy
- » University with 'bug' on firewall
 - > Capacity reduced to 1Gbit/s or less on any flow
 - > Normal campus users did not report the issue; perfSONAR detected it

- » Consider how to apply the necessary policy efficiently
- » Is this an area that interests the WISE community?
- » Design in appropriate network engineering
- » The classic 'Science DMZ' model has value; many were doing it anyway
 - > Well-tuned DTNs with host-based security
 - > SDN may provide a more agile 'DMZ' architecture
- » Consider emerging data-intensive application network protocols; QUIC, etc.
- » Measure performance over time (perfSONAR)
- » Don't disrupt research; performance is a requirement
 - > Just like the confidentiality, integrity and availability (CIA) principles



Some useful links

- » Janet E2EPI project page
 - https://www.jisc.ac.uk/rd/projects/janet-end-to-end-performance-initiative
- » JiscMail E2EPI list (approx 100 subscribers)
 - https://www.jiscmail.ac.uk/cgi-bin/webadmin?Ao=E2EPI
- » Camus Network Engineering for Data-Intensive Science workshop slides
 - https://www.jisc.ac.uk/events/campus-network-engineering-for-dataintensive-science-workshop-19-oct-2016
 - <u>https://www.slideshare.net/JISC/science-dmz-security</u> (Kate Mace, ESnet)
- » Fasterdata knowledge base
 - <u>http://fasterdata.es.net/</u>
- » eduPERT knowledge base
 - http://kb.pert.geant.net/PERTKB/WebHome

Please feel free to get in touch!

Dr Tim Chown

Network Development Manager

tim.chown@jisc.ac.uk

jisc.ac.uk