How to deploy eduroam in any WiFi network (INTERMEDIATE)

- eduroam SP
 - Basic deployment considerations for wireless LANs
 - Administrative obligations of eduroam SPs
 - Set up of WiFi hotspots
 - Cisco (controller-based solutions)
 - Initial settings and defining the IP address
 - Access Control Lists
 - Access Point configuration
 - Defining the RADIUS server
 - Defining a wireless network
 - Cisco (stand-alone APs with IOS)
 - Setting the Name and IP address
 - RADIUS/AAA section
 - Configuring the SSIDs
 - The Radio Interface
 - VLAN interfaces
 - The multiple (dynamic) VLAN assignment
 - Sample configuration
 - Aruba
 - Trapeze (Juniper)
 - Fortinet (Formerly Meru)
 - Step 1: Create the RADIUS profile
 - Step 2: Create the Security Profile
 - Step 3: Creating the ESS Profile
 - Lancom
 - Initial provisioning
 - Timezone setup
 - Logging
 - Configuring the wireless LAN
 - Security settings
 - Using RADIUS/TLS instead of RADIUS (optional)
 - Apple AirPort Express
 - Set up of networking equipment in the network core
 - Set up of eduroam SP RADIUS servers
 - Version information
 - Installation
 - Sample config directory
 - Base configuration / logging / F-Ticks
 - Client definition
 - Request forwarding
 - Goodies
 - Running FreeRADIUS as non-root user
 - F-Ticks
 - Caveats
 - eduroam for temporary events
 - Deployment of eduroam at a conference or event
 - Contact information for the RADIUS connection to eduroam
 - Simple setup: all eduroam users in the same VLAN
 - Advanced setup: dynamic VLAN assignment

eduroam SP

Basic deployment considerations for wireless LANs

An eduroam wireless network is a wireless network. This sounds trivial, but it is important to keep in mind that

- a poorly managed Wireless LAN won’t magically become better by naming it eduroam. Before diving into eduroam-specific configuration, make sure you understand how to manage
 - WiFi coverage
 - bandwidth requirements
 - enough DHCP addresses to accommodate all clients
- by naming the network eduroam, you are becoming part of a world-wide recognised brand. Arriving users will think of this being an eduroam network, with a set of expectations for such networks. If your wireless network fails to deliver in the points mentioned above, users will consider this an eduroam failure and your installation will hurt the global brand eduroam, not only your own site and users.

This section provides general advice regarding wireless LAN deployment. It is not meant as a replacement for further literature; there are many books and online publications regarding good wireless LAN planning, and you are encouraged to familiarise yourself with this topic.

(Editor's note: place all your helpful advice HERE! :-))
Administrative obligations of eduroam SPs

Set up of WiFi hotspots

All of the solutions presented below support the basic requirements for an eduroam SP: support for IEEE 802.1X authentications, WPA2/AES support. When deploying eduroam, deployers often want to make use of additional features such as multi-SSID support, dynamic VLAN assignment and others. Every section contains a table with a short overview of their support of such additional useful features.

Cisco (controller-based solutions)

<table>
<thead>
<tr>
<th>Feature</th>
<th>supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>multi-SSID</td>
<td>yes</td>
</tr>
<tr>
<td>VLANs</td>
<td>yes</td>
</tr>
<tr>
<td>dynamic VLAN assignment</td>
<td>partial; not with IPv6</td>
</tr>
</tbody>
</table>

The example configuration shown in this chapter was obtained from a Cisco 4400 Series Wireless LAN Controller.

Initial settings and defining the IP address

In the first phase the controller must be accessed through the Command Line Interface (CLI). When an IP address has been assigned to the controller, further configuration can be done using the web interface, but the CLI can be continued to be used.

Establish access to the controller by using a serial console and configure the initial settings for example as follows.
Welcome to the Cisco Wizard Configuration Tool
Use the '-' character to backup
System Name [Cisco_b2:e2:83]: <your_system_name>
Enter Administrative User Name (24 characters max): <your_username>
Enter Administrative Password (24 characters max): <your_password>
Re-enter Administrative Password : <your_password>

Service Interface IP Address Configuration [none][DHCP]: DHCP

Enable Link Aggregation (LAG) [yes][NO]: NO
Management Interface IP Address: esim. xxx.yyy.zzz.1
Management Interface Netmask: <your_network_mask>
Management Interface Default Router: <your_router's_IP_address>
Management Interface VLAN Identifier (0 = untagged): <0 or 1>
Management Interface Port Num [1 to 2]: 1
Management Interface DHCP Server IP Address: esim. xxx.yyy.zzz.2

AP Transport Mode [layer2][LAYER3]: <layer2 if controller and access points are on same subnet; layer3 if routing in between>
AP Manager Interface IP Address: esim. xxx.yyy.zzz.3
AP Manager Interface DHCP Server: <your_network_mask>
Virtual Gateway IP Address: xxx.yyy.zzz.www

Mobility/RF Group Name: <choose a suitable name if you have more than one controller. Otherwise, don't care>
Enable Symmetric Mobility Tunneling [yes][NO]: NO

Network Name (SSID): <Define a test SSID at first>
Allow Static IP Addresses [YES][no]: no
Configure a RADIUS Server now? [YES][no]: no #Will be done later

Warning! The default WLAN security policy requires a RADIUS server.
Please see documentation for more details.

Enter Country Code list (enter 'help' for a list of countries) [US]: <your country abbreviation>

Enable 802.11b Network [YES][no]: no
Enable 802.11a Network [YES][no]: YES
Enable Auto-RF [YES][no]: YES

Configure a NTP server now? [YES][no]: no #Will be done later
Configure the system time now? [YES][no]: no #Will be done later

Warning! No AP will come up unless the time is set.
Please see documentation for more details.

Configuration correct? If yes, system will save it and reset. [yes][NO]: yes

#When the system has rebooted, familiarize yourself with the CLI by defining
(Cisco Controller) >config time ntp server 1 xyz.zyx.zzy.wyz
(Cisco Controller) >config time ntp server 2 xyz.zzz.zzy.wyz

Access Control Lists
After the initial setup, the access control (ACL) list needs to be configured, in order to prohibit unauthorized access to the controller. Choose SECURITY and then Access Control Lists | Access Control Lists and create an ACL by pressing New... The ACL should include at least

- the networks from which maintenance is carried out
- the address(es) of the monitoring server(s)
- the network(s) from which the APs and the WLAN clients get their addresses
- the address(es) of the RADIUS server(s)
- a rule to always answer ping commands

An example of an ACL is shown below. Inbound means packets towards the controller and outbound means packets towards the WLAN clients.
After you have specified the ACL you need to take it into use by first selecting Access Control Lists from the side bar and by choosing your ACL and specifying the CPU ACL Mode to \textit{Wired or Both}.

Access Point configuration

If the access points are connected to the same subnet as the controller, they will automatically find the controller and connect to it. If this is not the case, the IP address of the controller must be find from the name server by the name \texttt{CISCO-LWAPP-CONTROLLER}. Once the access point has found the controller, it stores the IP of the controller, and it can connect to it from any network, as long as the network allowed access in the ACL (see previous section).

The next step is to define the wireless network, which has to be done separately for 2.4 GHz and 5 GHz. First, choose WIRELESS and then 802.11b/g/n | Network. Enabling the 802.11b-standard will result in less available capacity on your network and therefore it is recommended to enable only the standards 802.11g and 802.11n. Enable 802.11g according to the figure shown below. If you want to support also the 802.11-b standard, set _Mandatory_ for the lowest 802.11b-rate that you want to support (1 Mbps, 2 Mbps, 5.5 Mbps or 11 Mbps), set _Supported_ for all data rates higher than this rate and _Disabled_ for all rates lower than this rate. If 802.11b needs to be supported, it may pay off to disable the lowest rates, in order to avoid clients being attach to an AP far away, unwilling to roam.

Next, switch to enable the standard 802.11a for 5 GHz by selecting 802.11a/n | Network. Configure the settings according to the figure below.

The only standard left to enable is the standard 802.11n. You can choose to enable it for either 2.4 GHz or 5 GHz. It has been suggested that 802.11n is enabled only on the 5 GHz band, in order to utilise the radio resources effectively, see the Campus Best Practice document on "WLAN network planning and setup" Chapter 6.3. That document, along with a wealth of other WLAN resource planning advice, can be found at \texttt{GEANT Campus Best Practices - Wireless}. To enable 802.11n in the network select 802.11a/n | High throughput (802.11n) and/or 802.11b/g/n | High throughput (802.11n) and configure the settings according to the figure below.
At this point you have enabled the radios, but you have not yet defined any network, so don’t try to use the access points just yet.

Defining the RADIUS server

Define the RADIUS server to be used in the eduroam network by selecting SECURITY and then AAA | RADIUS | Authentication. Define the IP address, the shared secret and the other parameters according to figure. Please note that your first server will naturally have a server index of one.

Defining a wireless network

Select WLANs and then WLANs | WLANs from the sidebar. Create a new network and name it as shown in the figure below.

After defining the eduroam network, click on the WLAN ID number to start defining the settings for the network. Set the General settings according to the figure below, then click the Security tab.

In order to enable only WPA2-AES, fill in the security settings as shown in the figure below.
After this, click on the AAA Servers tab and select the RADIUS server that you defined earlier to be used in eduroam.

Next, click on the QoS tab and make sure that you have set the WMM Policy to either Required or Allowed. Otherwise, the higher transmission rates associated with the 802.11n-standard will not work. Then select the Advanced tab and adjust the settings as shown in the figure below. By choosing the parameter P2P Blocking Action to have the value Forward-UpStream, you can prevent WLAN clients to communicate directly, without involving the AP, as recommended in the Campus Best Practice document on "WLAN Information Security" Chapter 2.2 and 2.3. MFP Client Protection is known to have caused problems and can be disabled.

At this stage, click Apply. In the Advanced-tab, the Client Exclusion timeout value was set to 60s. While this is a suitable value, the rules for client exclusion are a bit too strict. Hence, it pays off to adjust the rules by selecting SECURITY and then Wireless Protection Policies | Client Exclusion Policies from the sidebar and uncheck all other options except for "IP Theft or IP Reuse".

These are the basic settings for the Cisco controller. More advanced settings can be found from the upcoming Campus Best Practice document on "WLAN infrastructure", to be published in the first half of 2011.

Cisco (stand-alone APs with IOS)

<table>
<thead>
<tr>
<th>Feature</th>
<th>supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>multi-SSID</td>
<td>yes</td>
</tr>
<tr>
<td>VLANs</td>
<td>yes</td>
</tr>
<tr>
<td>dynamic VLAN assignment</td>
<td>yes</td>
</tr>
</tbody>
</table>

The following equipment was used for this section:

Cisco AP 1200 Series (802.11g Radio).

The configuration examples used in this document were tested and made on a Cisco Series 1200 with an 802.11g Radio Module and with the following Cisco software:
Setting the Name and IP address

First, an IP address on the BVI interface (the IP address that this Access Point will have for accessing resources like the RADIUS server) needs to be configured. Also a unique name for this Access Point (ap1200) will be configured.

```
ap#configure terminal
ap1200(config)#hostname ap1200
ap1200(config)#interface BVI 1
ap1200(config-if)# ip address 192.168.10.200 255.255.255.0
```

RADIUS/AAA section

In the authentication, authorisation and accounting configuration parameters (AAA), at least one group needs to be defined (radsrv), which will be assigned later for the several AAA operations. More groups can be defined if needed for various purposes; one for authentication, another for accounting, and so on. In this example the RADIUS server has the IP address 192.168.10.253.

```
ap1200(config)#aaa new-model
ap1200(config)#radius-server host 192.168.10.253 auth-port 1812 acct-port 1813 key <secret>
ap1200(config)#aaa group server radius radsrv
ap1200(config-sg-radius)#server 192.168.10.253 auth-port 1812 acct-port 1813
ap1200(config-sg-radius)#!
ap1200(config-sg-radius)#aaa authentication login eap_methods group radsrv
ap1200(config)#aaa authorization network default group radsrv
ap1200(config)#aaa accounting send stop-record authentication failure
ap1200(config)#aaa accounting session-duration ntp-adjusted
ap1200(config)#aaa accounting update newinfo periodic 15
ap1200(config)#aaa accounting network default start-stop group radsrv
ap1200(config)#aaa accounting network acct_methods start-stop group radsrv
```

Configuring the SSIDs

For each SSID one `dot11 ssid <SSID NAME>` must be configured. In this section the default VLAN for the SSID will be configured as well as the authentication framework, the accounting and, if desired, the SSID to be broadcast (guest-mode).

```
ap1200(config)#dot11 ssid eduroam
ap1200(config-ssid)#vlan 909
ap1200(config-ssid)#authentication open eap eap_methods
ap1200(config-ssid)#authentication network-eap eap_methods
ap1200(config-ssid)#authentication key-management wpa optional
ap1200(config-ssid)#accounting acct_methods
ap1200(config-ssid)#guest-mode
```

More SSIDs can be configured. An open SSID for giving information about the institution and/or how to connect to the eduroam SSID:
The Radio Interface

Now the configured SSID’s will be mapped to the radio interface, and it will be specified what ciphers will be used/allowed on each VLAN. If dynamic VLANs are planned, the ciphers for those VLANs must also be configured even if there is no direct mapping on any SSID (this example shows the usage of the VLANs 906 and 909 for eduroam users)

```
ap1200(config)#interface Dot11Radio 0
ap1200(config-if)# encryption vlan 906 mode ciphers aes-ccm tkip wep128
ap1200(config-if)# encryption vlan 909 mode ciphers aes-ccm tkip wep128
ap1200(config-if)#ssid eduroam
```

To bind extra SSID’s the previous command, for each SSID to be bound, needs to be repeated. The following command sets the maximum time (e.g. 300 seconds, which is recommended) for rekeying/reauthentication:

```
dot1x reauth-period 300
```

VLAN interfaces

For each VLAN to be used for wireless clients, two virtual interfaces need to be defined: one on "the air" (DotRadio) and another on the "wire" (FastEthernet) then they need to be bridged together with the same bridge group. These VLANs are always tagged with the proper VLAN identifier.

An administrative VLAN needs to be configured as well (for maintenance/management and authentication/accounting traffic). This VLAN is usually untagged (the command defining the VLAN has to be suffixed with the keyword "native") and belongs to bridge-group 1. The Radio virtual interface for this VLAN does not need to be defined since the default will keep the physical interface (Dot Radio 0) in bridge-group 1.

Because VLANs can be from 1 to 4094 and bridge-groups from 1 to 255, it is not necessary to have the same bridge-group id as the vlan id.

```
ap1200(config)#interface dot11Radio 0.903
ap1200(config-subif)#encapsulation dot1Q 903
ap1200(config-subif)#bridge-group 3
ap1200(config)#interface fastEthernet 0.903
ap1200(config-subif)#encapsulation dot1Q 903
ap1200(config-subif)#bridge-group 3
ap1200(config)#interface dot11Radio 0.909
ap1200(config-subif)#encapsulation dot1Q 909
ap1200(config-subif)#bridge-group 9
ap1200(config)#interface fastEthernet 0.909
ap1200(config-subif)#encapsulation dot1Q 909
ap1200(config-subif)#bridge-group 9
```

The multiple (dynamic) VLAN assignment

The example configuration above did not configure dynamic VLAN assignment. Availability of this feature varies between models of the 1200 Series, so please exercise caution when procuring if you wish to make use of this feature. If multiple VLANs are configured on the Cisco AP, it is mandatory to associate each SSID to at least one VLAN, otherwise the Access Point will not activate the SSID’s. It is possible however, to put different users who are connected to the same SSID (e.g. eduroam) on different VLANs based, for instance, on the user profile. To activate this feature it is necessary to enter

```
"aaa authorisation network default group radiusgroup"
```
in the Access Point's configuration. The AP then gives priority to the VLANs returned by RADIUS over the ones statically associated with the SSID. This enables the feature dynamic VLAN assignment.

Cisco's Access Points require that two virtual interfaces (a radio and an Ethernet port interface) are configured for each VLAN. If, for example, four VLANs are to be used for eduroam users (for students, admin staff, teachers and visiting eduroam users from other institutions for example) then it is necessary to define one Dot11Radio0.vlanID, and one FastEthernet0.vlanID, and ensure that both have the same encapsulation dot1Q vlanID and the same bridge-group for each VLAN.

Two commands that are also needed are the below, otherwise the access point will not change the user to the received VLAN:

```
encryption vlan vlanID mode ciphers aes-ccm
broadcast-key vlan vlanID change 600 membership-termination capability-change
```

Sample configuration

The required configuration can be downloaded as a file from http://www.eduroam.org/downloads/docs/eduroam-cookbook-scripts.zip. You must then amend the file as indicated by the comments in the file, and then copy and paste the commands into the Access Point in configuration mode (telnet or console access).

Aruba

This section was kindly provided by John Mitchell, Glen Johnson (both University of Alaska), Dave Worth, Philippe Hanset (both University of Tennessee) and Jeff Hagley (Internet2).

Configuring Aruba Wireless controllers for eduroam is no different than any other 802.1x wireless network on your campus.

1. Create RADIUS Server(s)
 Configuration > Authentication > Servers > RADIUS Server > Add
2. Create RADIUS Server Group
 Configuration > Authentication > Servers > Server Group > Add
3. Create 802.1x Group Auth. Profile
 Configuration > Authentication > L2 Auth. > 802.1x Auth. Profile > Add
4. Create User Roles
 Configuration > Access Control > User Roles > Add
5. Create AAA Profile
 Configuration > Authentication > AAA Profiles > Add
6. Create SSID Profile
 Configuration > All Profiles > Wireless LAN > SSID Profile > Add
7. Create Virtual AP
 Configuration > All Profiles > Wireless LAN > Virtual AP Profile > Add
Select SSID and AAA Profiles created above

The following screenshots show these steps in the web configuration interface:

Step 1:

RADIUS Server > Radius1 - eduroam

<table>
<thead>
<tr>
<th>Host</th>
<th>Your RADIUS server IP</th>
<th>Key</th>
<th>**********</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth Port</td>
<td>1812</td>
<td>Acct Port</td>
<td>1813</td>
</tr>
<tr>
<td>Retransmits</td>
<td>3</td>
<td>Timeout</td>
<td>5 sec</td>
</tr>
<tr>
<td>NAS ID</td>
<td>eduroam</td>
<td>The IP from which RADIUS requests arrive</td>
<td></td>
</tr>
<tr>
<td>Use MD5</td>
<td>[off]</td>
<td>Mode</td>
<td>[on]</td>
</tr>
</tbody>
</table>

Step 2:
Step 3:

802.1X Authentication Profile > eduroam

- Max authentication failures: 0
- Enforce Machine Authentication: unchecked
- Machine Authentication: Default Machine Role: guest
- Machine Authentication: Default User Role: guest
- Reauthentication: unchecked
- Termination: unchecked
- Termination EAP-Type: eap-tls, eap-peap
- Termination Inner EAP-Type: eap-mschapv2, eap-gtc

Step 4:

Security > Access Control > User Roles

- Firewall Policies: Up: Not Enforced, Down: Not Enforced
- Bandwidth Control: Up: Not Enforced, Down: Not Enforced

Step 5:
AAA Profile

<table>
<thead>
<tr>
<th>Initial role</th>
<th>eduroam-logon</th>
<th>MAC Authentication Default Role</th>
<th>guest</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1X Authentication Default Role</td>
<td>eduroam-authenticated</td>
<td>User derivation rules</td>
<td>--NONE--</td>
</tr>
</tbody>
</table>

MAC Authentication Profile
- MAC Authentication Server Group: default
- 802.1X Authentication Profile: eduroam
- 802.1X Authentication Server Group: eduroam
- RADIUS Accounting Server Group: eduroam
- XML API server: eduroam
- RFC 3576 server: eduroam

SSID Profile

Network
- Network Name (SSID): eduroam

802.11 Security
- Network Authentication: WPA2
- Encryption: AES

Step 6:

Step 7:
Trapeze (Juniper)

Configuring Trapeze (or now days Juniper) Wireless controllers for eduroam is no different than any other 802.1x wireless network on your campus.

1. **Add RADIUS Server(s)**
 - Configure > AUTHENTICATION > RADIUS > Add RADIUS Server
2. **Create VLAN (for the eduroam WLAN)**
 - Configure > SYSTEM > VLANs > Create VLAN
3. **Configure the VLAN**
 - (Press the magnifying glass icon)
4. **Create the Wireless Service**
 - Configure > WIRELESS > Services > Create New Service
5. **Configure more**
 - (Encryption Types)
6. **Configure some more**
 - (Cipher Suites)

The following screenshots show these steps in the web configuration interface:

Step 1:
Step 2:

Step 3:
Step 4:

Step 5:

Step 6:
Fortinet (Formerly Meru)

<table>
<thead>
<tr>
<th>Feature</th>
<th>supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>multi-SSID</td>
<td>yes</td>
</tr>
<tr>
<td>VLANs</td>
<td>yes</td>
</tr>
<tr>
<td>dynamic VLAN assignment</td>
<td>yes</td>
</tr>
</tbody>
</table>

Create the Meru controller as a RADIUS client on your RADIUS server. Open your browser and connect to your Meru controller (in this example, an MC1500 is used).

Step 1: Create the RADIUS profile

Under the Configuration tab, click on Radius under the Security heading.

Click on the Add button to add a new RADIUS profile, and enter the required information:
Click the OK button to complete this part of the setup.

Step 2: Create the Security Profile

Next, click on the Profile option under the Security heading. Click the Add button to add a new profile.

Profile name: eduroam (or anything you like)
L2 modes allowed: WPA2
Data Encrypt: CCMP-AES
Primary RADIUS profile: eduroam (or as created in Step 1 above)
Secondary RADIUS profile: optional
Click the **OK** button to complete this part of the setup.

Step 3: Creating the ESS Profile

Under the **Configuration** tab, click on the **ESS** option under **Wireless**.

Click on the **Add** button.

Complete the information as required:

- **ESS Profile Name:** eduroam (or any other meaningful name)
- **Enable/Disable:** enable (enable/disable this profile)
- **SSID:** eduroam (this **must** be set to "eduroam", all in lower case)
- **Security Profile Name:** eduroam (or whatever you called in in **Step 2** above)
Click the OK button to complete the setup.

This is a basic guide to get eduroam going. Additional steps can be taken to bind VLANs to the SSIDs based on the SSID itself, or as specified on the RADIUS server.

(Credits for this HOWTO: Connie van Zyl, eduroam South Africa)

Lancom

<table>
<thead>
<tr>
<th>Feature</th>
<th>supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>multi-SSID</td>
<td>yes</td>
</tr>
<tr>
<td>VLANs</td>
<td>yes</td>
</tr>
</tbody>
</table>
This series of Access Points offers a wide range of features for a mid-range price. One of the outstanding features in its price class is the ability to use ARP sniffing to determine a client’s IP address even if it changes during a user session. Activating this feature fulfils the requirement for MAC to IP correlation from the confederation policy and obsoletes logging of DHCP leases.

The following steps are needed to set up eduroam on a Lancom L-54 or L-300 series access point. It describes the setup via the web interface and is current as of LCOS Version 8.0. The starting point of this tutorial is a factory-reset device, i.e. it is not configured at all and set up to its defaults.

Initial provisioning

After connecting the device to mains power, it will boot with the Power LED on the front becoming steadily green. The LEDs on top flash green-yellow-blank to indicate that the device is unconfigured.

The Access Point defaults to being a DHCP server on a private subnet. For configuration access, simply connect a PC with a cross-over cable and make the PC a DHCP client. After connecting, the client will have an IP address in the 172.23.56.0/24 network. For configuration access, point your PC’s browser to https://172.23.56.254

A wizard will ask you basic questions about your intended configuration which are non eduroam-specific. Please complete the wizard by answering all the questions.

Pay special attention to step 6, where you configure the IP address. Remember to check the box "Configure default gateway" since the access point needs to talk to RADIUS, NTP and syslog servers, which may lie in a different subnet!

At step 8 of 9, you will encounter the first crucial setting for compliance with the eduroam policy: time synchronisation. The device suggests an NTP server (pool.ntp.org), which is a sane default setting. However, if you operate your own NTP server, you can select "Other..." and enter your own server name (see screenshot).

If you changed the IP address of the Access Point with the wizard, re-connect to the Access Point on its new address after finishing the wizard.

Timezone setup

The Access point needs to be synchronised with a NTP or SNTP time server (which was set up using the wizard), which requires correct timezone settings. Click on "Configuration" -> "Date & Time" -> "General" and verify that the correct time zone and daytime saving time settings are set (see screenshot).

Logging

Another requirement in the eduroam policy is that the eduroam SP is required to maintain logs of the authentication and of MAC-address to IP address bindings. LANCOM devices can satisfy both by logging events via syslog. By default, the device keeps short-term logs by logging to "127.0.0.1". The logs can be viewed by navigating to the menu "LCOS Menu Tree" > "Status" > "TCP-IP" > "syslog" > "Last Messages" and look like the following (prefixed with the exact timestamp, left out for readability reasons):

```
AUT H  Notice  [WLAN-1] Associated WLAN station 64:b9:e8:a0:2e:a4 []
AUT H  Notice  [WLAN-1] WLAN station 64:b9:e8:a0:2e:a4 [] authenticated via 802.1x [user name is certuser-2010-001@restena.lu]
```
AUT H Notic e [WLAN-1] Key handshake with peer 64:b9:e8:a0:2e:a4 successfully completed

AUT H Notic e [WLAN-1] Connected WLAN station 64:b9:e8:a0:2e:a4 []

AUT H Notic e [WLAN-1] Determined IPv4 address for station 64:b9:e8:a0:2e:a4 []: 158.64.3.24

AUT H Notic e [WLAN-1] Disassociated WLAN station 64:b9:e8:a0:2e:a4 [] due to station request (Disassociated because sending station is leaving BSS)

As you can see, the authentication itself and all MAC -> IP binding actions are logged, both for IPv4 and IPv6.

It is required to log these notices to an external syslog server, since the syslog buffer in the device fills quickly and the information would be lost otherwise. Add your syslog server by selecting the menu item "Configuration" > "Log & Trace" > "Syslog" and make sure the box "Send information..." is checked (it is by default) (see screenshot).

![Syslog configuration screenshot](image)

Then click on "Syslog servers" and on the following page "Add".

Then enter the IP address of your syslog server, and choose the events that shall be logged. We suggest to select at least the sources

- System
- Login
- System time
- Console Login
- Connections
- Administration

and the levels

- Alert
- Error
- Warning
- Information

for a comprehensive overview of events on the device.

Configuring the wireless LAN

The network name (SSID) for an eduroam SP is usually "eduroam", and the SSID needs to be broadcasted. Unfortunately, the network cannot be set up via the corresponding wizard, since the wizard only allows to configure WPA-Personal authentication, not eduroam's WPA-Enterprise. So, the necessary settings can only be found under "Configuration" > "Wireless LAN" > "General" (see screenshot).
First, we need to enable the MAC to IP address logging. This is done by checking the box “ARP handling”. You should also make sure that you enter the correct country on this page, since the country setting makes your device conformant to national regulations for radio usage.

We also suggest to check the box “Broken LAN link ...” as a safety feature: if the access point detects that the wired backhaul is disconnected, it will stop broadcasting the wireless network. This saves users from frustration if connecting to a defunct access point.

After these settings, go to the sub-menu "Logical WLAN setting – Network", see screenshot below.

The device offers eight independent networks. Choose one you want to use for eduroam (for example: WLAN-1) and click on its entry. Now set the properties of this network as follows:

- WLAN network enabled to **On**.
- Network name (SSID) to **eduroam**.
- Deselect the box labelled “Suppress SSID broadcast”
- MAC filter enabled to **Off**.
- Maximum count of clients to **0**.
- Client Bridge support to **No**.

When deploying your hotspot, you should also consider some non eduroam-specific guidelines for WLAN deployment. An incomplete list of things to consider is collected in chapter FOO.

Security settings

You need to make two security-relevant settings: configure the RADIUS server to use for authenticating users and configure the eduroam Wireless LAN to use RADIUS at all.

First, let’s define a RADIUS server for authentication. As a pure eduroam SP, the RADIUS server in question is likely the one of your national federation. If you are both an eduroam IdP and an eduroam SP, the RADIUS is your own RADIUS server.

Select "Configuration" > "Wireless LAN" > "IEEE 802.1X" > "RADIUS server" and click on “Add”. (see screenshot below).

Then, fill in your RADIUS server details as negotiated with your eduroam IdP or federation operator.

In the second step, we’ll apply the RADIUS server and encryption scheme to the SSID eduroam. To do that, go to the menu "Configuration" > "Wireless LAN" > "802.11i/WEP" > "WPA or Private WEP settings". Then, click on the WLAN network which you chose for the "eduroam" SSID before (see screenshot).
Set the following entries:

- Encryption Activated to **Activated**
- (Key 1/passphrase is irrelevant)
- Method/Key 1 Length to **802.11i(WPA)-802.1x**
- WPA Version to WPA2
- (WPA1 Session Key Type is irrelevant)
- WPA2 Session Key Type to **AES**
- (WPA rekeying cycle is at your discretion; the default value 0 is a sane default)
- (Client EAP method is irrelevant)
- (Authentication is irrelevant)
- (Default key is irrelevant)

A recurring question is “Why is Client EAP method irrelevant?" The answer is: this setting refers to which authentication method the access point should use when it is in **Client** mode (i.e. it acts as a supplicant to connect to another access point). When in Access Point mode, its role is by design limited to transparently pass all authentication methods to a RADIUS server.

Using RADIUS/TLS instead of RADIUS (optional)

LANCOM devices have a RADIUS/TLS client built-in. It can be used instead of standard RADIUS for the uplink to an IdP. Please note that most of the value of RADIUS/TLS plays out in long-haul connections, like from an eduroam IdP server to his federation. If your Access Point is located closely to your RADIUS server, using RADIUS is sufficient and you need not follow the steps below.

To use RADIUS/TLS in the eduroam context, you must have been issued an eduroam Service Provider X.509 certificate from your federation operator.

When you have your certificate, the private key, and the CA certificate that issued you your certificate, you need to upload these via the device menu "File Management" > "Upload Certificate or File".

Upload them using the File Type "RADSEC ..." as in the screenshot below.

Then, go to “LCOS Menu Tree” > “Setup” > “IEEE802.1X” > “RADIUS Server” and set the Protocol option to “RADSEC”, as in the screenshot below. The shared secret is not security-relevant when using RADIUS/TLS, but it must be set nevertheless. eduroam uses the fixed string “**radsec**” for all RADIUS/TLS shared secrets.
Apple AirPort Express

<table>
<thead>
<tr>
<th>Feature</th>
<th>supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>multi-SSID</td>
<td>no</td>
</tr>
<tr>
<td>VLANs</td>
<td>no</td>
</tr>
<tr>
<td>dynamic VLAN assignment</td>
<td>no</td>
</tr>
</tbody>
</table>

Set up of networking equipment in the network core

Since an eduroam hotspot always uses the RADIUS protocol to connect to a RADIUS authentication server, your network setup must allow this RADIUS communication. This includes opening firewalls for traffic from the WLAN equipment (AP/Controller) to UDP port 1812 (do not confuse this with TCP!). The RADIUS protocol can easily create UDP fragments, and will not function fully without UDP fragmentation support. Be sure to check your equipment whether forwarding of UDP fragments is supported and allowed.

If you deploy your own RADIUS server for eduroam SP purposes (see below), also make sure that its own uplinks to your National Roaming Operator are open in the same way.

Set up of eduroam SP RADIUS servers

FreeRADIUS is a very versatile and freely available RADIUS server under the GPL license. Setting up FreeRADIUS as an SP is a rather straightforward task, since it merely needs to forward requests from NASes to other RADIUS servers. In particular, it does not need to authenticate users. The following configuration enables your FreeRADIUS server to be an eduroam SP. At the same time, it is the baseline from which to establish an eduroam IdP configuration, if that is envisaged for a later stage.

Version information

This document is in migration from FreeRADIUS 2 to FreeRADIUS 3. We recommend using the last available version of the stable FreeRADIUS 3 branch. It's easy to compile version 3 (and create packages) if your distribution doesn't provide recent packages. (On Ubuntu/Debian with "make deb" for instance and "rpmbuild -ba redhat/freeradius.spec" should help you on Red Hat based systems.)

Some of the filesystem paths changed between version 2 and 3. The /etc/raddb/modules directory is now split between /etc/raddb/mods-available and /etc/raddb/mods-enabled, plus some of the configuration can be found in /etc/raddb/mods-config. Note that when a module isn't called from the rest of the configuration, placing it in mods-enabled doesn't mean it's active: only that it's available in the rest of your configuration.

Installation

FreeRADIUS is written in C and can be compiled with the usual UNIX compilation sequence. After unpacking the source into a directory of your choice, do

```
./configure --prefix=<your preferred install dir> --sysconfdir=<your preferred configuration base dir>
make
make install
```

In the examples below, we assume the installation is done for --prefix=/usr/local/freeradius/ and the configuration dir is --sysconfdir=/etc

Sample config directory

Base configuration / logging / F-Ticks

The main configuration file is /etc/raddb/radiusd.conf; it does not require many changes from the shipped default.

The following lines are important for eduroam operation: a server status probing mechanism called Status-Server is enabled in the security section. Make sure the config file contains the following security stanza

```plaintext
security {
    max_attributes = 200
    reject_delay = 0
    status_server = yes
}
proxy_requests = yes
```

(From the default distribution, only reject_delay needs to be changed.)
FreeRADIUS is capable of both IPv4 and IPv6. By default, both are enabled in the listen {} section of sites-enabled/default so we'll duplicate them in our new sites-enabled/eduroam configuration. (The listen {} directives used to be in /etc/raddb/radiusd.conf for FreeRADIUS 2.) You can leave out the IPv6 part if your server shouldn't do IPv6.

The logic in the server is defined by activating modules in a certain order. These modules are separately defined in the /etc/raddb/mods-enabled/ subdirectory (and configured in /etc/raddb/mods-config/ where applicable). The order of activation of these modules is defined in so-called virtual servers, which are defined in the /etc/raddb/sites-enabled/ directory. For our eduroam SP purposes, we only need one virtual server "eduroam" and call very few of the modules. It needs to contain as a minimum:
server eduroam {

 listen {
 type = "auth"
 ipaddr = *
 port = 0
 }

 listen {
 type = "acct"
 ipaddr = *
 port = 0
 }

 listen {
 type = "auth"
 ipv6addr = ::
 port = 0
 }

 listen {
 type = "acct"
 ipv6addr = ::
 port = 0
 }

 authorize {
 # only use filter_username from version > 3.0.7 on
 filter_username
 update request {
 Operator-Name := "1yourdomain.tld"
 # the literal number "1" above is an important prefix! Do not change it!
 }
 # if you want detailed logging
 auth_log
 suffix
 }

 authenticate {
 }

 preacct {
 suffix
 }

 accounting {
 }

 post-auth {
 # if you want detailed logging
 reply_log
 Post-Auth-Type REJECT {
 reply_log
 }
 }

 pre-proxy {
 # if you want detailed logging
 pre_proxy_log
 if("%(Packet-Type)" != "Accounting-Request") {
 attr_filter.pre-proxy
 }
 }

 post-proxy {
 # if you want detailed logging
 post_proxy_log
 attr_filter.post-proxy
 }
}
The multitude of sections in this above configuration is often confusing to new-comers. The order of execution when proxying a request are:

```
authorize authenticate pre-proxy
```

Then, the packet is proxied to an upstream server. When the reply comes back, the execution continues:

```
post-proxy post-auth
```

Every stanza contains names of modules to be executed. Let's revisit them one after another:

- **auth_log**: logs the incoming packet to the file system. This is needed to fulfill the eduroam SP logging requirements.
- **suffix**: inspects the packet to look for an eduroam style realm (separated by the @ sign)
- **pre_proxy_log**: logs the packet to the file system again. Attributes that were added during the inspection process before are then visible to the administrator - great for debugging
- **attr_filter.pre-proxy**: strips unwanted attributes off of the request before sending the request to upstream
- **post_proxy_log**: logs the reply packet to the file system - as received by upstream
- **attr_filter.post-proxy**: strips unwanted attributes off of the reply, prior to sending it back to the Access Points (VLAN attributes in particular!)
- **reply_log**: logs the reply packet after attribute filtering to the file system

The paths where the logs are written to, and the files with the list of permitted attributes for filtering, are defined in the corresponding module definitions in `/etc/raddb/modules/<name-of-module>`.

If `attr_filter.pre-proxy` is enabled (as per the example above), then by default Operator-Name and Calling-Station-Id are stripped from the proxied request. In order for them not to be removed, add the attributes to `/etc/raddb/attrs.pre-proxy` (FreeRADIUS 2) or `/etc/raddb/mods-config/attr_filter/pre-proxy` (FreeRADIUS 3). This is a more sensible default for eduroam:

```
DEFAULT
User-Name = * ANY,
EAP-Message = * ANY,
Message-Authenticator = * ANY,
NAS-IP-Address = * ANY,
NAS-Identifier = * ANY,
State = * ANY,
Proxy-State = * ANY,
Calling-Station-Id = * ANY,
Called-Station-Id = * ANY,
Operator-Name = * ANY
```

Since the eduroam SP with this configuration will statically use RADIUS to its upstream federation-level server, activation of F-Ticks reporting is not strictly necessary. It is thus described only in the "Goodies" section below.

Client definition

FreeRADIUS defines the connected RADIUS clients in the file `/etc/raddb/clients.conf`. This file needs to hold all your connected Access Points and/or wired eduroam-enabled switches. You set a shared secret for each client and define these in the config file as follows:

```
client antarctica-access-point-1 {
    ipaddr = 172.25.1.55
    netmask = 32
    secret = yoursecret12345
    shortname = southpole-11g
    virtual_server = eduroam
    require_message_authenticator = yes
}
```

There are more (optional) settings for clients; please consult the comments in clients.conf for more detail. One option, the "virtual_server" one, enables your RADIUS server to serve more purposes than only eduroam: you can define several other virtual servers for other RADIUS purposes, and link clients to these. That is beyond the scope of this documentation, though.

If you want to connect your clients over IPv6, the syntax is only slightly different:
Request forwarding

FreeRADIUS contains a wealth of options to define how requests are forwarded. These options are defined in the file /etc/raddb/proxy.conf. For a single eduroam SP, these may seem overkill, but the required definitions for that purpose are rather static. Assuming you have two upstream servers to forward requests to, the following configuration will set these up - you only need to change the IP addresses and shared secrets in home_server stanzas.

```plaintext
proxy server {
    default_fallback = no
}

home_server antarctica-flr-1 {
    type = auth+acct
    ipaddr = 172.20.1.2
    port = 1812
    secret = secretstuff
    status_check = status-server
}

home_server antarctica-flr-2 {
    type = auth+acct
    ipaddr = 172.25.9.3
    port = 1812
    secret = secretstuff
    status_check = status-server
}

home_server_pool EDUROAM {
    type = fail-over
    home_server = antarctica-flr-1
    home_server = antarctica-flr-2
}

realm "~.+$" {
    pool = EDUROAM
    nostrip
}
```

Goodies

Running FreeRADIUS as non-root user

The RADIUS protocol runs on ports >1023, which means it can be started entirely in unprivileged mode on UNIX-like systems. You can easily achieve that by

- creating a user "radiusd" and group "radiusd"
- giving all configuration files in /etc/raddb ownerships for that user radiusd + group radiusd
- changing these two parameters in /etc/raddb/radiusd.conf:

```plaintext
user = radiusd
group = radiusd
```

F-Ticks

F-Ticks is using syslog to deliver user login statistics. You can enable syslog logging for login events by defining a `&linelog` module. In the /etc/raddb /modules/ subdirectory, create a new file "f_ticks":

```plaintext
```

```plaintext```
linelog f_ticks {
    filename = syslog
    #syslog_facility = local0
    #syslog_severity = info
    format = ""
    reference = "f_ticks.%{reply:Packet-Type}:-format"
    f_ticks {
        Access-Accept = "F-TICKS/eduroam/1.0#REALM=%{Realm}#VISCOUNTRY=YOUR-TLD#VISINST=%{Operator-Name}#CSI=%{Calling-Station-Id}#RESULT=OK#"
        Access-Reject = "F-TICKS/eduroam/1.0#REALM=%{Realm}#VISCOUNTRY=YOUR-TLD#VISINST=%{Operator-Name}#CSI=%{Calling-Station-Id}#RESULT=FAIL#"
    }
}

Note that you have to adapt VISCOUNTRY to the country you are in (eg. set YOUR-TLD to "LU"), and VISINST to an identifier for your hotspot - which in this example is already set to the Operator-Name attribute. You can set the syslog facility and severity to help forward these ticks to the right place.

You need to enable this new module in the post-auth section of your virtual server eduroam:

```plaintext
post-auth {
 # if you want detailed logging
 reply_log
 f_ticks
 Post-Auth-Type REJECT {
 # if you want detailed logging
 reply_log
 f_ticks
 }
}
```

This way, appropriate loglines will be logged into your local syslog instance. If you want to forward your ticks to the statistics system, please get in touch with your NRO to get to know the syslog destination and configure your syslog daemon to forward the log line correspondingly.

Please note that the file proxy.conf may need your attention: FreeRADIUS’ handling of the "DEFAULT" realm changed slightly between 2.1.9 and 2.1.10: previously, it would fill %{Realm} with the actual realm (e.g. "education.lu"), but after the change, it would use the literal "DEFAULT". It is not helpful to generate ticks with REALM=DEFAULT.

If you were using DEFAULT before, and now notice that ticks are sent incorrectly, the mitigation is to use a regular expression instead of DEFAULT - because for realm statements with regular expressions, also the most recent versions still substitute with the actual realm.

You would need to delete the DEFAULT realm and replace it with the following regular expression realm statement "at the end of your proxy.conf":

```plaintext
realm "~.+$" {
 ...
}
```

Caveats

Use the most recent version available (3.0.10 at the time of writing) because of known issues in older versions (ranging from filters that prevent people to get online with mixed usernames to TLS-related bugs).

eduroam for temporary events

Deployment of eduroam at a conference or event

eduroam is a wireless networking service for users of the education and research sector world-wide. It is based on IT industry standards which many enterprise-class wireless networking equipment supports.

eduroam directly operates the authentication infrastructure for network admission; it does not provide operators on-site with WiFi or other networking equipment. So, in order to provide eduroam at your conference or event, you need to have your own equipment with an appropriate feature set for your deployment needs. In generic terms, the WiFi equipment for your event or conference needs to support the following standard for use with eduroam:

- IEEE 802.11i Enterprise (WPA2/AES with RADIUS authentication)
- a separate SSID named "eduroam" (without the quotes)
This document provides contact information to get in touch with the responsible eduroam operator, and also administrative requirements and technical information regarding eduroam Service Provider hotspots.

**Contact information for the RADIUS connection to eduroam**

If your event is taking place always in the same country, you should contact the eduroam National Roaming Operator (NRO) for your country to negotiate the RADIUS uplink for your WiFi equipment. You can get in touch with the responsible NRO by using this contact form ("My organisation wants to connect to eduroam", and then your country) - make sure that you mention that you are seeking a temporary connection as Broadband Service Provider only.

If your event takes place in varying locations, eduroam Operations can provide you with a "catch-all" RADIUS server uplink. Please use the same contact form as in the previous paragraph, but select "My country is not in the list...".

**Simple setup: all eduroam users in the same VLAN**

If all eduroam users are to be put into the same VLAN, it is not usually necessary to set up and operate a RADIUS server at the conference side. Instead, eduroam Operations operates RADIUS servers for that purpose. Once you have negotiated the uplink details as detailed above, you can configure these in your WiFi equipment and are all set. Be sure to disable dynamic VLAN assignments in that case; the eduroam infrastructure cannot guarantee that a participating institution doesn't inappropriately send RADIUS attributes for VLAN assignment.

See the following chapter ("eduroam SP") for further information regarding the exact setup of your WiFi or wired ethernet equipment.

**Advanced setup: dynamic VLAN assignment**

If you want to put different users into different VLANs, you will need to set up a RADIUS server to do the VLAN assignments. Then, configure this RADIUS server to proxy authentication requests to the negotiated RADIUS uplink from above.

See the beginning of this Chapter ("eduroam SP") for further information regarding the exact setup of your WiFi or wired ethernet equipment, and your RADIUS server.