eduroam in a nutshell

General overview

eduroam stands for education roaming. It offers users from participating academic institutions secure Internet access at any other eduroam participating location. The eduroam architecture that makes this possible is based on a number of technologies and agreements, which together provide the eduroam user experience: "open your laptop and be online".

The crucial agreement underpinning the foundation of eduroam involves the mechanism by which authentication and authorisation works:

In order to transport the authentication request of a user from the Service Provider to his Identity Provider and the authentication response back, a world-wide system of RADIUS servers is created. Typically every Identity Provider deploys a RADIUS server, which is connected to a local user database. This RADIUS server is connected to a federation level RADIUS server, which is either in turn connected to the upstream RADIUS server infrastructure or can connect to other RADIUS servers dynamically (using the protocol RADIUS/TLS). Because users are using usernames of the format "user@realm", where realm is the IdP's DNS domain name often of the form institution.tld (tld=top-level domain; both country-code TLDs and generic TLDs are supported), the RADIUS servers can use this information to route the request to the appropriate next RADIUS server until the IdP is reached. An example of the RADIUS hierarchy is shown in Figure 2.1.

To transfer the user's authentication information securely across the RADIUS-infrastructure to their IdP, and to prevent other users from hijacking the connection after successful authentication, the access points or switches deployed by the SP use the IEEE 802.1X standard that encompasses the use of the Extensible Authentication Protocol (EAP). EAP is a container that carries the actual authentication data inside, the so-called EAP methods. There are many EAP methods an IdP can choose from.

eduroam requires that the chosen EAP method must allow

Some popular EAP methods in use in eduroam are

RADIUS transports the user's name in an attribute User-Name, which is visible in cleartext to all intermediate hosts on the way. Some EAP methods allow to put a different User-Name into the RADIUS packet than in the EAP payload. In that case, the following terms are used:

When using such EAP methods, and activating this option, the real username is not visible in RADIUS (it will only see the outer identity). Doing so will enhance the user's privacy, and is encouraged. Outer identities should be in the format "@realm" (nothing left of the @ sign, but the realm is the same as with the actual username). The realm part still must be the correct one as it is used to route the request to the respective Identity Provider. Once the IdP server decrypts the TLS tunnel in the EAP payload, it gets the inner identity and can authenticate the user.

After successful authentication by the Identity Provider and authorisation by the Service Provider, this SP grants network access to the user, possibly by placing the user in a specific VLAN intended for guests.

In the next chapter the various elements of this architecture and their functions is described.

Note: On responsibility for actions of the user: Directive 2001/31/EC article 12 defines the liability of a service provider:

The complete Directive can be found at EUR-Lex1.

Figure 2.1: Layers of the eduroam RADIUS hierarchy NEED TO (RE)CREATE DIAGRAM ??

Please refer to deliverable DJ5.1.4 "Inter-NREN Roaming Architecture: Description and Development Items" for an in-depth description of eduroam and the underlying architecture.