
1.

2.

Large TCP Windows
In order to achieve high data rates with over " ", i.e. network paths with a large , TCP sinks (that is, hosts TCP long fat networks bandwidth-delay product
receiving data transported by TCP) must advertise a large TCP receive window (referred to as just 'the window', since there is not an equivalent advertised
'send window').

The window is a 16 bit value (bytes 15 and 16 in the TCP header) and so, in TCP as originally specified, it is limited to a value of 65535 (64K). The receive
window sets an upper limit on the sustained throughput achieveable over a TCP connection since it represents the maximum amount of unacknowledged
data (in bytes) there can be on the TCP path. Mathematically, achieveable throughput can never be more than WINDOW_SIZE/RTT, so for a trans-Atlantic
link, with say an RTT (Round trip Time) of 150ms, the throughput is limited to a maximum of 3.4Mbps. With the emergence of " ", the limit long fat networks
of 64K bytes (on some systems even just) was clearly insufficient and so laid down (amongst other things) a way of 32K bytes! RFC 7323 scaling the

, such that the 16-bit window value can represent numbers larger than 64K.advertised window

RFC 7323 extensions

RFC 7323, (and formerly RFC 1323) defines several mechanisms to enable high-speed transfers over : TCP Extensions for High Performance, LFNs Windo
 and .w Scaling, TCP Timestamps, Protection Against Wrapped Sequence numbers (PAWS)

The increases the maximum window size fom 64KB to 1Gbyte, by shifting the window field left by up to 14. The window scale TCP window scaling option
option is used only during the TCP 3-way handshake (both sides set the window scale option in their SYN segments if scaling is to be used in either must
direction).

It is important to use option with large TCP windows. With the TCP timestamps option, each segment contains a timestamp. The receiver TCP timestamps
returns that timestamp in each ACK and this allows the sender to estimate the RTT. On the other hand with the TCP timestamps option the problem of
wrapped sequence number could be solved (PAWS - Protection Against Wrapped Sequences) which could occur with large windows.

(Auto) Configuration

In the past, most operating systems required manual tuning to use large TCP windows. The section contains information on how to to OS-specific tuning
this for a set of operating systems.

Since around 2008-2010, many popular operating systems will use large windows and the necessary protocol options by default, thanks to TCP Buffer
.Auto-Tuning

Can TCP Windows ever be large?too

There are several potential issues when TCP Windows are larger than necessary:

When there are many active TCP connection endpoints (sockets) on a system - such as a popular Web or file server - then a large TCP window
size will lead to high consumption of system (kernel) memory. This can have a number of negative consequences: The system may run out of
buffer space so that no new connections can be opened, or the high occupation of kernel memory (which typically must reside in actual RAM and
cannot be "paged out" to disk) can "starve" other processes of access to fast memory (cache and RAM)
Large windows can cause large "bursts" of consecutive segments/packets. When there is a bottleneck in the path - because of a slower link or
because of cross-traffic - these bursts will fill up buffers in the network device (router or switch) in front of that bottleneck. The larger these bursts,
the higher are the risks that this buffer overflows and causes multiple segments to be dropped. So a large window can lead to "sawtooth" behavior
and worse link utilisation than with a just-big-enough window where TCP could operate at a steady rate.

Several methods for have been developed to resolve these issues, some of which have been implemented in (at least) recent automatic TCP buffer tuning
Linux versions.

References

RFC 7323, , D. Borman, B. Braden, , B. Scheffenegger, September 2014 (obsoletes RFC 1323 TCP Extensions for High Performance V. Jacobson
from May 1993)
Achieving Reliable High Performance in LFNs, S. Ubik and P. Cimbal, TNC 2003, May 2003, http://staff.cesnet.cz/~ubik/publications/2003
/terena2003.pdf
Debugging end-to-end performance in commodity operating systems, S. Ubik and P. Cimbal, PFLDnet 2003, February 2003, http://staff.cesnet.cz
/~ubik/publications/2003/pfldnet2003.pdf

– Main.SimonLeinen - 27 Oct 2004 - 27 Sep 2014

#
https://wiki.geant.org/display/EK/LongFatNetworks
https://wiki.geant.org/display/EK/BandwidthDelayProduct
https://wiki.geant.org/display/EK/LongFatNetworks
#
http://tools.ietf.org/html/rfc7323
https://wiki.geant.org/display/EK/WindowScalingOption
https://wiki.geant.org/display/EK/WindowScalingOption
http://tools.ietf.org/html/rfc7323
https://wiki.geant.org/display/EK/LongFatNetworks
https://wiki.geant.org/display/EK/WindowScalingOption
https://wiki.geant.org/display/EK/Operating+System+Specific
https://wiki.geant.org/display/EK/TCP+Buffer+Auto+Tuning
https://wiki.geant.org/display/EK/TCP+Buffer+Auto+Tuning
https://wiki.geant.org/display/EK/TCP+Buffer+Auto+Tuning
http://tools.ietf.org/html/rfc7323
#
http://staff.cesnet.cz/~ubik/publications/2003/terena2003.pdf
http://staff.cesnet.cz/~ubik/publications/2003/terena2003.pdf
http://staff.cesnet.cz/~ubik/publications/2003/pfldnet2003.pdf
http://staff.cesnet.cz/~ubik/publications/2003/pfldnet2003.pdf

	Large TCP Windows

