How to deploy eduroam at national level (ADVANCED)

® Becoming a Roaming Operator (RO)
© Administrative requirements
© Information management requirements
® Operating a Federation Level RADIUS server (FLR)
© Hardware requirements
o Software requirements and setup
© Radiator
= Version information
® |nstallation
Base configuration / logging / F-Ticks
Client definition
Request forwarding
Goodies
® Local logging of auths in one line
* SNMP
= Caveats
O radsecproxy
" Version information
" |nstallation
= Sample config file
® Local Logging
® F-Ticks
® RADIUS/TLS
Client definition

Request forwarding
Goodies
® Keeping the config file at a manageable size
" Caveats
© FreeRADIUS 3 - RADSEC
® Version information
® Sample config file
® |nstallation
" Caveats
® Gauging your federation's performance
© Monitoring
® Federation monitoring in Europe: the eduroam Operational Team
® Monitoring inside the federation
® Nagios/Icinga: EAP Login checks
® Preparatory work
® Implementing the checks
® Nagios/Icinga: RADIUS/TLS certificate validity checks
O Statistics

Becoming a Roaming Operator (RO)

An eduroam federation comes with administrative requirements as well as technical ones. This document uses the eduroam Compliance Statement and
the European Configuration definitions and documents; which provide a the baseline for the world-wide eduroam community.

Administrative requirements

Operating a federation involves managing and supervising eduroam Identity Providers, eduroam Service Providers, as well as keeping authentication logs,
fulfilling uptime requirements, etc. Prospect federation operators should read and understand the requirements in DS5.1.1 ("eduroam Service Definition
and Implementation Plan”) at https://eduroam.org/wp-content/uploads/2020/02/GN2-07-327v2-DS5_1_1-_eduroam_Service_Definition.pdf, particularly
sections 4.1.4 ("Roles and Responsibilities - NROs") and section 6 ("Requirements on Confederation Members").

A prospect NRO also needs to commit to the eduroam policy. The European eduroam policy document can be found at https://www.eduroam.org/wp-
content/uploads/2016/05/GN3-12-194_eduroam-policy-for-signing_ver2-4_1_ 18052012.pdf

The RO may outsource the operation of its technical infrastructure (particularly, the Federation Level RADIUS servers) to a third-party, but will remain
responsible for eduroam within its service area.

Information management requirements

A Roaming Operator (RO) must maintain a comprehensive overview over eduroam within its service area, and report about its federation's state regularly.
The vehicle for such reports is the eduroam database, where information about the RO and all its eduroam SPs and IdPs is stored. The database web
interface is open for eduroam operators only; the entry page can be found here: http://monitor.eduroam.org/db_web/

Generic information on how to deliver information to the eduroam database (JSON, XML Schema format) can be found here: http://monitor.eduroam.org
/database.php

https://eduroam.org/wp-content/uploads/2020/02/GN2-07-327v2-DS5_1_1-_eduroam_Service_Definition.pdf
https://www.eduroam.org/wp-content/uploads/2016/05/GN3-12-194_eduroam-policy-for-signing_ver2-4_1_18052012.pdf
https://www.eduroam.org/wp-content/uploads/2016/05/GN3-12-194_eduroam-policy-for-signing_ver2-4_1_18052012.pdf
http://monitor.eduroam.org/db_web/
http://monitor.eduroam.org/database.php
http://monitor.eduroam.org/database.php

Operating a Federation Level RADIUS server (FLR)

Federation Level RADIUS (FLR) servers are used to connect eduroam Identity Providers and eduroam Service Providers with each other, and also provide
an uplink from the federation to all other eduroam federations. They are managed by Roaming Operators (ROs). The RO may outsource the operation to a
third-party, but will remain responsible.

Since the concept of an eduroam federation geographically usually maps to a territory or economy, FLRs are central to the deployment of eduroam; there
is conceptually only one FLR per RO territory - but for resiliency reasons, it is recommended to provide multiple instances in a failover setup.

An eduroam federation comes with administrative requirements as well as technical ones. The exact requirements may differ between federations. This
document uses the European definitions and documents; which provide a baseline for the world-wide eduroam community.

Hardware requirements

RADIUS is a very lightweight protocol, and does not require expensive hardware setups. Even the busiest eduroam federations operate their server on a
single contemporary hardware or Virtual Machine, without experiencing overload conditions.

As with every other professionally-operated service though, you should keep in mind that service uptime is paramount, and plan your procurement
accordingly. Examples:

® In the case of virtual machines, use an underlying infrastructure which enables you to migrate machines without VM downtime, if possible.
® |n the case of physical machines, use hot-pluggable parts where possible; and ideally, keep either spare hardware parts at hand or a set up a
decent service contract.

eduroam Europe is in the process of migrating to RADIUS/TLS for its federation servers. In the course of this process, hardware requirements for the
servers may change. This section will be updated as necessary.

Software requirements and setup

eduroam does not prescribe any particular RADIUS implementation. The technical requirements for eduroam however narrow the set of usable RADIUS
server implementations, and the observed deployment of eduroam federation-level servers shows patterns regarding implementation popularity.

This section will present a few typical implementation setups. Note, however, that a federation is free to use a different implementation so long as the
implementation can satisfy the eduroam technical requirements.

The sections for each implementation are accompanied by a skeleton configuration file, which should be usable almost as-is. However, please read and try
to understand the entire corresponding section before applying the template - the information presented is valuable for daily operation and troubleshooting.

Radiator

Radiator is perhaps the most popular server software in eduroam federations. The config file and examples below assume deployment on a UNIX-like
platform, such as Linux or FreeBSD. Radiator can also be used on Windows; in which case you will have to adapt some path names etc.

@ Use of IP addresses in this document

The IPv4 and IPv6 addresses below are in the IETF "documentation” prefix ranges - you will need to adapt the addresses for your production
use.

Version information

This section of the document was created and is verified to work with at least
® Radiator 4.7
® Net::SSLeay 1.37 [prerelease]
® Perl5.10

It is usually safe to assume that newer versions of these programs work as well.

Net::SSLeay 1.37 is the minimum required version for the RADIUS/TLS parts of the config to work completely: the version is needed for the
TLS_PolicyOID configuration parameter to work (which is needed for RADIUS/TLS server authorisation checks).

With currently only one CA exclusively issuing eduroam server certificates, the TLS_PolicyOID check is not essential right now.

It is thus also safe to use version 1.36 (and commenting out the configuration lines regarding TLS_PolicyOID). You should upgrade to 1.37 as soon as it is
publicly released and re-enable the parameter in the configuration.

Installation

Base configuration / logging / F-Ticks

Radiator expects the configuration to be in file /etc/radiator/radius.cfg.

The parameter LogDir defines the directory in which start-up logs and PID file reside. DbDir defines the path to Radiator's data files, such as dictionaries.

LogDir /var/| og/radiator
DbDi r /usr/ share/ radi at or

Throughout the configuration file, you may want to use DNS names instead of IP addresses. For RADIUS/TLS with dynamic discovery, it is even required
to use DNS. The configuration for DNS is as follows (replace the IP addresses with your own):

<Resol ver >
Naneservers 198. 51. 100. 254
Naneservers 2001: db8: 100: : 254
NAPTR- Patt ern x- eduroam (radi us)\. (tls)
Di rect Addr essLookup 0
Debug

</ Resol ver >

The logs during normal operation are defined separately in <Log> stanzas. The verbosity of logging depends on the Trace level in the configuration: Trace
3 logs are recommended for normal operation, while Trace 4 logs provide verbosity for debugging, if needed. You can define several <Log> instances with
different destinations. Let's define logging to syslog with verbosity level 3, and logging to a file for debugging purposes with verbosity level 4. We also
define that the log file name changes on a daily basis to enable easy deletion of old files:

<Log SYSLOG>

Facility | ocal 7
Identifier | 0og- sysl og
Trace 3
</ Log>
<Log FILE>
Fi | ename /var/ | og/radiator/radi at or. %% . | og
Identifier log-file
Trace 4
</ Log>

You can also log authentication events in one line per authentication separately. The eduroam statistics system, F-Ticks, makes use of that feature. The F-
Ticks logging facility is defined as follows:

<Aut hLog SYSLOG>

Identifier TICKS

LogSuccess 1

LogFailure 1

LogSock udp

LogHost 198.51. 100. 253

SuccessFor mat F- Tl CKS/ edur oam 1. 0O#REALM=YR#VI SCOUNTRY=% edur oam SP- Count r y} #VI SI NST=% Oper at or - Nane}
#CSI =% Cal | i ng- St ati on- | d} #RESULT=0K#

Fai | ureFor mat F- Tl CKS/ edur oan 1. O#REALM=%R4#VI SCOUNTRY=% edur oam SP- Count r y} #VI SI NST=% Oper at or - Nane}
#CS| =9 Cal | i ng- St ati on- | d} #RESULT=FAI L#
</ Aut hLog>

Here, you need to adapt LogHost to the eduroam F-Ticks logging server (whose address you'll receive from eduroam operations), and the attribute marked
with read. Its contents will become clearer later in the configuration file. Note: on some versions of Sys::Syslog and Radiator, you may need to replace
"udp" with "inet".

If you monitor your national infrastructure, you will probably have automatic authentications happening which are triggered by your monitoring. F-Ticks can
automatically separate these from real-world traffic and keep it out of the statistics. For that to work, you will have to use a value for Calling-Station-ID in
your monitoring requests which begins with 22-44-66.

Next, the ports Radiator will use to listen for Authentication and Accounting requests must be defined. The port numbers 1812 and 1813 were assigned to

the RADIUS protocol by IANA. Note: Exceptionally, you may come across very old RADIUS equipment which uses non-standard ports 1645 and 1646.
Please see the Radiator documentation how to handle these, or consider upgrading the corresponding equipment.

Aut hPor t 1812
Acct Port 1813

Client definition

In the client section, all possible peers from which the FLR server is going to accept requests, are listed. I.e. it includes all eduroam SPs in the federation
and the uplink to the other federations (in Europe, to the ETLR servers).

For RADIUS, individual clients with their IP address have to be listed and a "secret" has to be assigned to them. As this secret is the only thing that
protects the communication between the RADIUS servers from eavesdropping, it must be cryptographically strong (suggested: exactly 16 characters) and
well protected.

The clients should also be tagged with the attribute Operator-Name. which takes the format "1<domainname>", and for F-Ticks classification reasons, also
with the country the eduroam SP is located in (or UNKNOWN for clients whose geographic location isn't known).

Example: you have an eduroam SP which operates on the address 203.0.113.5 and have negotiated the shared secret "adf7856asdcvxb5p" with it. The
SP is based in Antarctica, and uses the domain name "foo.aq". You want it to show up in log files as "icecold-radius".

my eduroam SP in Antarctica

<Cient 203.0.113.5>

Secr et adf 7856asdcvxb5p
Identifier i cecol d-radi us
AddToRequest | f Not Exi st Qper at or - Nane=1f oo. aq, edur oam SP- Count r y=AQ
Requi r eMessageAut hent i cat or
</Cient>

Note: the Operator-Name attribute has the character "1" preceding the domain name. This is intentional and required as per the corresponding RFC.
Please always prepend the character "one" to the domain names of the operator.

The clients for your uplink to ETLRs will look similar to the following. Note they are tagged with Country=UNKNOWN because requests coming from these
countries can originate from all over the world (they connect all other federations). For the same reason, it also does not make sense to set the Operator-
Name attribute.

<Cient etlrl.eduroam org>

Identicaldients etlr2. eduroamorg
Secr et (as negotiated with eduroam OT)
Identifier etlrl. eduroamorg
AddToRequest | f Not Exi st edur oam SP- Count r y=UNKNOWWN
Requi r eMessageAut hent i cat or

</dient>

Two additional clients are useful: one client for localhost, which can be used for local debugging purposes (and which doesn't need a strong secret); and
the client which used for European FLR monitoring (negotiate the actual client address eduroam OT) at

<Client 192.0.2.1>
Secr et (as negotiated with eduroam OT)
Identifier Moni t ori ng- ETLR
AddToRequest | f Not Exi st edur oam SP- Count r y=NONE
Requi r eMessageAut hent i cat or
</Cient>

<Client |ocal host>
Secret nysecr et
Dupl nt erval 0
AddToRequest | f Not Exi st edur oam SP- Count r y=NONE
Requi r eMessageAut hent i cat or
</Client>

Note: all the Identifier names in the configuration need to be unique, and should be meaningful to you, the server operator.

Finally, to enable RADIUS/TLS clients to communicate with your server, you need an additional section for RADIUS/TLS like the following. Replace your
server's IP address(es) and paths to the certificate files as necessary - please refer to the "Certificates" section for details on how to obtain and manage
RADIUS/TLS certificates.

http://foo.aq
https://wiki.geant.org/display/H2eduroam/radsec+certificates

<Ser ver RADSEC>

Por t 2083

Bi ndAddr ess 198. 51. 100. 252, i pv6: 2001: db8: 1:: 26
Secr et radsec

Pr ot ocol tcp

UseTLS

TLS_CAPat h /etc/radiator/certs/ CAs/current/
TLS CertificateFile /etc/radiator/certs/server. pem
TLS_ CertificateType PEM

TLS Privat eKeyFil e /etc/radiator/certs/server. key
TLS_Pol i cyd D 1.3.6.1.4.1.25178.3. 1. 1

TLS RequireCd ientCert

Identifier RadSec

AddToRequest edur oam SP- Count r y=UNKNOMN

</ Ser ver RADSEC>

Request forwarding

Your eduroam IdPs

eduroam authentication requests are routed based on the User-Name attribute in the request. Radiator will extract the realm from the User-Name attribute.
Radiator uses <Handler> definitions for routing decisions. Even though routing may seem straight-forward since it is based on a single string, it is
unfortunately easy to introduce routing loops. Therefore, special care should be taken to prevent this. There are several approaches to that. The one
presented here involves regular expressions. The following example shows these, based on the hyptothetical eduroam IdP realm "foo.aq" in Antarctica,
and one authoritative RADIUS server for this realm. That same IdP is also an SP and could originate requests. The handler will then look like the following:

<Handl er Real m=/*foo\.aq$/i,Cient-ldentifier=/~(?!icecold-radius$)/>
<Aut hBy RADI US>
Di sabl eMIUDi scovery

Ret r yTi neout 3
Retries 1
Fai | ur eBackof f Ti me 300 # (adjust after own needs)

UseExt endedl ds
<Host 203.0.113. 54>

Aut hPor t 1812
Acct Port 1813
Secr et XXXXXXXKXXXXXXXXXXXXXXXXX

</ Host >
</ Aut hBy>
Aut hLog TI CKS
Aut hLog def aul t Aut hLog
</ Handl er >

Note the regular expression: it matches only exactly "foo.aq" - not "barfoo.aq" or "foo.agx". It also contains a safety measure: since the FLR operator can
make the link that the realm "foo.aq" is colocated with a eduroam SP whose Client Identifier is "icecold-radius", it can spot that there must be an error if
requests for the realm "foo.aq" leave the server in question. Therefore, the Handler clause will only match if the Client-ldentifier is NOT "icecold-radius".

If the eduroam IdP provides multiple servers for resiliency reasons, you can specify this in the Handler as well. Please consult the Radiator manual for
further details.

Handlers are evaluated in-order, so you should list all known eduroam IdPs one after another in one big block.

You should also add several "catch-all" realms for unknown realms. They are listed below.

Handling empty realms

Empty realms means User-Name requests that do not carry the @... suffix. In a well-behaved eduroam IdP, empty realms should not reach the FLR server

(they would be discarded by the IdP already), but if they do, this following realm definition will catch them and reject the request. A reply will be added to
the rejected requests explaining the reason for rejection. Replace <TLD> with the federation top-level domain you are authoritative for.

http://foo.aq
http://foo.aq
http://barfoo.aq
http://foo.aq
http://foo.aq

<Handl er Real m=/ "$/ >

Account i ngHandl ed

<Aut hBy | NTERNAL>

Def aul t Result REJECT
Rej ect Reason M sconfigured client: enpty realm Rejected by <TLD>.
</ Aut hBy>

Rej ect HasReason

Aut hLog def aul t Aut hLog
</ Handl er >

Unknown realms in the own federation

As the FLR server, your server needs to provide authoritative answers for all possible realms under your TLD. This means that all unknown realms need to
be rejected by your server. Failure to do so may lead to routing loops!

Add the following stanza (after your Handler sections for valid realms!) to catch and reject all unknown realms that end in your own TLD (obviously
replacing the term TLD with your top-level domain):

<Handl er Real m=/.*\.t|d$/i>
Account i ngHandl ed
<Aut hBy | NTERNAL>
Def aul t Result REJECT
Rej ect Reason M sconfigured supplicant or downstream server: uses non-existing realmin <TLD>
federation!
</ Aut hBy>
Rej ect HasReason
Aut hLog TI CKS
Aut hLog def aul t Aut hLog
</ Handl er >

Other known-bad realms

In general, no further second-guessing of incoming realm names should be done. New federations join eduroam every once in a while, and some
connected IdPs may reside under "surprising” TLDs (such as .com). That is not a reason to hard-codedly reject all these realms.

However, there are some few well-known, bad, realms that can safely be filtered. The following entry is such an example. For all other realms, please
consult the eduroam OT before applying any rejection rules.

One such invalid realm is seen quite often due to supplicant misconfiguration: myabc.com (this is the default realm in an unconfigured Intel PRO/Set
Wireless supplicant). The following stanza rejects this realm with an appropriate error message and blindly acknowledges all Accounting requests.

<Handl er Real m=/ myabc\. cont/i >
Account i ngHandl ed
<Aut hBy | NTERNAL>
Def aul t Resul t REJECT
Rej ect Reason M sconfigured client: default realmof Intel PROWreless supplicant! Rejected
by <TLD>.
</ Aut hBy>
Rej ect HasReason
Aut hLog TI CKS
Aut hLog def aul t Aut hLog
</ Handl er >

Realms from other federations

This is the last Handler rule: it forwards all requests that haven't matched any previous Handler and determines the routing destination. It will first attempt
to discover whether there is a direct RADIUS/TLS soute to the destination realm's server, and if not, route the request to the ETLRs.

http://myabc.com

<Handl er User-Nane = /\@>
<Aut hBy DNSROAM>

Port 2083

Pr ot ocol radsec

Transport tcp

UseTLS 1

Secr et radsec

Reconnect Ti neout 1

Nor epl yTi meout 5

Connect OnDenmand

TLS_CAPat h /etc/radiator/certs/ CAs/current/

TLS CertificateFile /etc/radiator/certs/server.pem
TLS CertificateType PEM
TLS PrivateKeyFile /etc/radiator/certs/server.key

TLS Pol i cyd D 1.3.6.1.4.1.25178.3.1.2
TLS_Expect edPeer Nane CN=. *
<Rout e>

Real m DEFAULT
Address etlrl. eduroamorg
Port 2083
Transport tcp
Protocol radsec
</ Rout e>
</ Aut hBy>
Aut hLog TI CKS
</ Handl er >

Replace your paths to the certificate files as necessary - please refer to the "Certificates" section for details on how to obtain and manage RADIUS/TLS
certificates.

Goodies

Local logging of auths in one line

It is useful to log each authentication locally, with more detail than is needed for F-Ticks. We suggest using the following log definition — it generates one
single line of log output per authentication, which is very parser-friendly if logs need to be evaluated later:

<Aut hLog SYSLOG>

Identifier def aul t Aut hLog

Facility | ocal 7

Logl dent radi at or

Fai | ur eFor mat Access-Reject for % (User-Nane=% Repl y: User - Nane}) at Proxy=% (CSI=%Calling-
St ati on-1d} NAS=% NAS- | denti fier}/ %)

SuccessFor mat Access- Accept for % (User-Name=% Repl y: User- Nane}) at Proxy=% (CSl=%Calling-
Stati on-1d} NAS=% NAS- I dentifier}/ %) EAP=% HexAddress: EAP- Message}

LogSuccess 1

LogFai |l ure 1

</ Aut hLog>

SNMP

You may want to configure SNMP access to your server. SNMP allows remote monitoring of activity on a RADIUS server with tools such as RADAR from
OSC (http://www.open.com.au/radar/index.html), or drawing simple graphs of activity by rgraph from CESNET (http://www.eduroam.cz/rgraph/).

<SNMPAgent >
ROCOMIuUNi ty XXXXXXXXXXXXXXXXXXXXXXXXX
Manager s | ocal host 127.0.0.1
</ SN\MPAgent >

Caveats

The previous sections have referenced two specific RADIUS attributes, "Operator-Name" and "eduroam-SP-Country". In Radiator 4.7, these attributes
aren't shipped by default and need to be registered in the server's so-called "dictionary".

https://wiki.geant.org/display/H2eduroam/radsec+certificates
http://www.open.com.au/radar/index.html
http://www.eduroam.cz/rgraph/

Operator-Name, and a few more attributes, is defined in the IETF document RFC5580. The definitions in there are canonical, but they clash with the
dictionary that's shipped with Radiator, so you will have to remove a few bogus entries, and then add the correct definitions. Please open the file
"dictionary" and make the following edits:

Delete the following bogus entries near line 230 of the dictionary file:

ATTRI BUTE Ascend- Rout e- Pr ef erence 126 i nt eger
ATTRI BUTE Tunnel i ng- Pr ot ocol 127 i nt eger
ATTRI BUTE Ascend- Shar ed- Profi | e- Enabl e 128 i nteger
ATTRI BUTE Ascend- Pri mar y- Home- Agent 129 string
ATTRI BUTE Ascend- Secondar y- Hone- Agent 130 string
ATTRI BUTE Ascend- Di al out - Al | owed 131 i nteger
ATTRI BUTE Ascend- C i ent - Gat eway 132 i paddr

Replace them with the following definitions:

ATTRI BUTE Qper at or - Nane 126 string
ATTRI BUTE Locati on-1nformation 127 string
ATTRI BUTE Locati on- Dat a 128 string
ATTRI BUTE Basi c- Locati on- Pol i cy- Rul es 129 string
ATTRI BUTE Ext ended- Locati on-Policy-Rules 130 string
ATTRI BUTE Locat i on- Capabl e 131 i nt eger
ATTRI BUTE Request ed- Locati on-Info 132 i nteger

The attribute eduroam-SP-Country is a custom extension, a so-called "vendor-specific" attribute. It is registered under the namespace of TERENA. Please
add the following definition at the end of the dictionary file if you use a version of Radiator BEFORE 4.9 with the patchset of 04 April 2012. For newer
versions of Radiator, this attribute is already shipped by default with the server and you do not have to change anything.

TERENA VSAs

#

VENDOR TERENA 25178

VENDORATTR 25178 edur oam SP- Country 10 string
radsecproxy

This section describes how to set up radsecproxy to act as a federation-level RADIUS and RADIUS/TLS server. It can then completely replace other
RADIUS server products on the federation level.

More precisely, it will enable a server to:
Accept requests from connected service providers via RADIUS and RADIUS/TLS.
Forward requests to connected identity providers via RADIUS and RADIUS/TLS.

Forward requests from international visitors to the European eduroam confederation root servers via RADIUS/TLS.
Accept requests from the root servers via RADIUS/TLS for the own federation's users when they are roaming in another federation.

[]
[]
[]
[]
Version information

The prerequisites for this deployment are:

® radsecproxy version 1.6 or higher
® A server certificate and a private key for that certificate to establish the RADIUS/TLS connection which designates the server as an |dP+SP.

Installation
On UNIX-like systems, the installation is very simple:

. Download the code from GitHub https://radsecproxy.github.io/.
. Unpack the code.

. Navigate into the unpacked directory (the base directory)

. type the usual UNIX compilation sequence:

A WNPE

https://radsecproxy.github.io/

./configure
make

make check
make install

4. After compiling and installing, the executable

radsecpr oxy

is in the installed directory. Execution of the installed binaries does not require root rights.

5. Copy the template configuration file below into

[etc/radsecproxy. conf

6. Create the directory /etc/radsecproxy/certs/ca/. The template configuration file requires this directory to contain the accredited CA root certificates
and the corresponding Certificate Revocation Lists (CRLS) in their OpenSSL hash form. See this section for information about the CA download

7. Fill the lines marked with _STUFF_ with the required information as explained below.

8. Start radsecproxy and enjoy (for first-time use, starting it with the -f option is recommended, it will start radsecproxy in the foreground and show
some verbose startup messages).

Sample config file

Most of the radsecproxy configuration file is static. This walk-through goes through the template radsecproxy.conf line by line and explains the meaning of
each stanza.

Li st enUDP *:1812
Li st enTCP *:2083

radsecproxy will receive requests from all connected Service Providers via both RADIUS and RadSec. Therefore it has to listen on the appropriate ports
on its network interfaces (the * meaning: all interfaces). If you want radsecproxy to listen only on specific interfaces, enter the interface names here.
Beware: in this case you may also have to set the more exotic options SourceUDP and/or SourceTCP (see the man page of radsecproxy for details).

Local Logging

A logging level of 3 is the default and recommended log level. Radsecproxy will then log successful and failed authentications on one line each. The log
destination is the local syslog destination.

LogLevel 3
LogDesti nation x-syslog:///LOG _LOCALO

radsecproxy features a semi-automatic prevention of routing loops for RADIUS connections. If you define a client and server block (see below) and give
them the same descriptive name, the proxy will prevent proxying from the client to that same server. Turn this feature on with:

LoopPr eventi on On

F-Ticks

If you use Radsecproxy, you should send basic statistical information about the number of logins for national and international roaming to the eduroam
Operations Team. The system to do that is "F-Ticks". radsecproxy has built-in support for F-Ticks: you simply add an option to all client { } definitions for
which you know the country they are physically located in. That typically means all your connected institutions' RADIUS clients, at the national level, but
excludes the international roaming top-level servers (e.g. the European Top-Level RADIUS Servers). For an institution it means all your WLAN controller
connections. The client definition examples below assume that you do use F-Ticks.

When the client definitions are set-up, the following options enable F-Ticks and send the syslog messages in a privacy-preserving way (by hashing parts of
the connecting end-user device's MAC address:

FTi cksReporting Full
FTi cksMAC Vendor KeyHashed
FTi cksKey arandonsal t

https://wiki.geant.org/display/H2eduroam/radsec+certificates

The ticks will end up in your local syslog daemon; they are NOT automatically sent forward to eduroam Operations. It will depend on your syslog
configuration how to achieve forwarding of the messages. For "rsyslog”, a popular recent syslog daemon, the following settings will make it work:

radsecproxy

if ($programane == 'radsecproxy') and ($nsg contains 'F-TICKS) \
t hen @.92.0.2.204
& P

As usual, the IP address above is NOT the actual destination for the eduroam Operations F-Ticks server. Please contact eduroam OT for the the IP
address of their server. Also keep your own server's IP address handy, because the F-Ticks server is firewalled to accept ticks only from known sources.

RADIUS/TLS

The following two sections define which TLS certificates should be used by default. This installation of radsecproxy always uses the same certificates, so
this is the only TLS section. CACertificatePath contains the eduroam-accredited CA certificates with filenames in the OpenSSL hash form. The parameters
below need to be adapted to point to your server certificate in PEM format, the private key for this certificate and the password for this private key if
needed, respectively. If no password is needed for the private key, you can comment this line (precede it with a # sign). The option CRLCheck validates
certificates against the Certificate Revocation List (CRL) of the CAs. It requires a valid CRL in place, or else the certificate validation will fail. Therefore, it is
important to regularly update the CRLs by re-downloading them as described above.

Right now, checking CRLs is discouraged due to a pending bug in OpenSSL regarding CRL reloading.

Replace your paths to the certificate files as necessary - please refer to the "Certificates" section for details on how to obtain and manage RADIUS/TLS
certificates.

tls defaultdient {

CACertificatePath / etc/ radsecproxy/ certs/cal
CertificateFile [etc/radsecproxy/certs/ CERT_PEM _
CertificateKeyFile /etc/radsecproxy/certs/ CERT_KEY__
Certificat eKeyPassword _ CERT_PASS__
pol i cyd D 1.3.6.1.4.1.25178.3.1.1

CRLCheck O

}

tls default Server {
CACertificatePath /etc/radsecproxy/certs/cal
CertificateFile /etc/radsecproxy/certs/ CERT_PEM _
CertificateKeyFile /etc/radsecproxy/certs/ CERT_KEY__
Certificat eKeyPassword _ CERT_PASS__
policyd D 1.3.6.1.4.1.25178.3.1.2

CRLCheck On

The following section deletes attributes from RADIUS requests that convey VLAN assignment information. If VLAN information is sent inadvertently, it can
cause a degraded or non-existent service for the end user because he might be put into the wrong VLAN. Connected service providers should filter this
attribute on their own. Connected Identity Providers should not send this attribute at all. Checking for the existence of these attributes on your server is just
an optional additional safety layer. If you do have a roaming use for cross-institution VLAN assignment, you may want to delete this stanza.

rewite defaultCient {

renoveAttribute 64
renoveAttribute 65
renoveAttribute 81

Client definition

client 127.0.0.1 {

type udp
secret testingl23

}

client ::1{
type udp
secret testingl23

There is no other RADIUS server running on localhost, which makes these client definitions almost superfluous. They may be of some use however to
initiate debugging requests and tests from the server itself, so it is considered good practice to list localhost as a client. If your system is not IPv6-enabled,
simply delete the second stanza.

client _ SP IP_ADDR _ {

type udp
secret __ SP_SECRET__
FTi cksVI SCOUNTRY XZ # will generate F-Ticks for a non-existant visited country

Stanzas like this one are used for each connected service provider that is connected via RADIUS. You need to know the IP address of every SP's RADIUS
server and negotiate a shared secret with the SP

Please note that the client and server stanza for the GEANT Monitoring (SA3-T2 activity) have the same host address, but different stanza names. This is
important: it disables the LoopDetection for this host, and the SA3 monitoring deliberate uses loops to do its tests. The following stanza is the eduroam
Service Activity's monitoring client. Negotiate the IP address and shared secret for European monitoring with the operators in SA3-T2 (eduroam
Operational Team) and enter it here.

client SA3-nonitoring-incomng {

host X.y.z.a
type UbP
secret __MONI TORI NG_SECRET__

client incomng {

host 0.0.0.0/0
host [::1/0

type TLS

tls defaul tdient
secret radsec

After all specific clients in the configuration, you can the above stanza as a "catch-all" for incoming RADIUS/TLS connections.It does not need to be
modified (if you do not support IPv6, you can delete the second "host" line though). In particular, the string "radsec" for secret is fixed by the RADIUS/TLS
protocol and is required to remain unchanged. It also has no effect; RADIUS/TLS depends on TLS security rather than the shared RADIUS secret.

The eduroam trust model requires that a SP that tries to connect has:

® A X.509 certificate from an eduroam-accredited CA
* which carries a Policy OID as configured above to prove authorisation as a eduroam Service Provider

These checks were defined via "tls defaultClient", above.

Request forwarding

To deliver requests to your connected IdPs, their servers need to be configured. This stanza is for IdP servers using RADIUS.

server __DESCRI PTI VE_NAME_ {

host __IP_ADDR__
type UDP
secret __ SERVER_SECRET__

This is the equivalent stanza for IdP servers using RADIUS/TLS.

server __ RADSEC PEER DNS_NAMVE {

type TLS
tls def aul t Server
secret radsec

statusserver on

The two following stanzas define the uplink to the European eduroam Confederation root servers. This entry can be kept as it stands and doesn't need any
further configuration.

server etlrl.eduroamorg {

type TLS
tls def aul t Server
secret radsec
stat usserver on
}
server etlr2.eduroamorg {
type TLS
tls def aul t Server
secret radsec
st at usserver on

European monitoring works both ways. The client entry near the beginning of the configuration file was needed for incoming requests from the monitoring
servers. The entry below specifies the outgoing connections to the monitoring server. Outgoing connections are currently monitored with RADIUS only.
Use the negotiated IP address and shared secret with SA3-T2 Monitoring in the following stanza:

server SA3-nonitoring-outgoing {

host a.b.c.d
type ubP
secret __MONI TORI NG_SECRET__

After defining the server configurations, we need to define which RADIUS realms are going to be forwarded to which server(s). This is done in the
remainder of the configuration file.

First, there are (very few) known-bad realms which are not forwarded at all. They should ideally never reach the FLR server, and be caught by the SP local
RADIUS server, but as an extra safety measure they are filtered (i.e. immediately rejected) here:

real m/nyabc\.con®/ {

repl ynessage "M sconfigured client: default realmof Intel PROWreless supplicant! Rejected by
<TLD>."

account i ngresponse on

}

real m/ @ *3gppnet wor k\ . or g$/ {
repl ynessage "M sconfigured client: Unsupported 3G EAP-SIMclient!"
accounti ngresponse on

}

realm/"$/ {
repl ynessage "M sconfigured client: enpty realm Rejected by <TLD>."
accounti ngresponse on

Note: if you need to blacklist an existing realm for some reason, you can follow the myabc.com example, copying and replacing it with the realm to be
blacklisted.

Requests for proper realms that are coming in from upstream and are supposed to be handled by an identity provider are listed in stanzas like the below. _|I
DP_REALM_ contains the realm of the connected IdP. Create one such stanza for each IdP realm. If an IdP has multiple servers for a failover
configuration, you can list all servers in a row, as in the example below.

real m /| DP_REALMB/ {
server __FROM SERVER _STANZAS_ABOVE__
server __ BACKUP_NAME__

The configuration stanza below is for outgoing European monitoring connections.

real m/eduroam . YOUR TLD {
server SA3- noni t or i ng- out goi ng

}

All the valid realms were listed earlier in the configuration file, and this server is authoritative for the own TLD. If a supplicant or downstream servers sends
a realm with the own TLD, but also with a realm name that is not registered, this request is unauthorised and bound to fail. It will be rejected immediately to
prevent routing loops.

real m/\.YOUR TLD$/ {
repl ynessage "M sconfigured supplicant or downstream server: uses known-bad realmin <TLD>
federation!"

}

Finally, all realms that do not belong to the own federation are forwarded to the European eduroam Confederation root servers. However, we limit this to
'sane’ realms: these must include a tld of at least 2 characters. Anything else is dropped.

realm/@+\..{2,}$/ {

server etlrl. eduroamorg
server etlr2. eduroamorg
}
realm* {
repl ynessage "M sconfigured client: usernane does not contain a valid realm"
}
Goodies

This section contains some optional configuration parameters that can do good in many cases.

Keeping the config file at a manageable size

radsecproxy allows to split the configuration file into several files on disk and include the parts into the main configuration file. This is very practical when
many sites have to be managed. You can create a subdir and put the client, server, realm parts together in one file per participant. By adding

include /etc/radsecproxy.conf.d/*. conf

into the main config file, you can put all the participant files into that directory.

Caveats

FreeRADIUS 3 - RADSEC

This section describes how to set up FreeRADIUS to handle RADSEC as a federation-level RADIUS and RADIUS/TLS server. It can then completely
replace other RADSEC proxy products on the federation level (i.e. if you already have FreeRADIUS you can simply activate this virtual server and you'll be
able to handle RADSEC - RADIUS/TLS over TCP).

More precisely, it will enable a server to:
Accept requests from connected service providers via RADIUS/TLS over TCP.
Forward requests to connected identity providers via RADIUS/TLS over TCP.

L]

L]

® Forward requests from international visitors to the European eduroam confederation root servers via RADIUS/TLS over TCP.

® Accept requests from the root servers via RADIUS/TLS over TCP for the own federation's users when they are roaming in another federation.

Version information

The prerequisites for this deployment are:

® FreeRADIUS version 3.0.0 or higher
® A server certificate and a private key for that certificate to establish the RadSec connection which designates the server as an |dP+SP.

Sample config file

All of the RADSEC configuration for FreeRADIUS 3.x can be in a single virtual server file. A detailed explanation of this configuration file is not yet
provided. However, the comments included in the file should make its action almost self- explanatory. This means you can start and experiment with it right
after installation.

Installation

Simply copy and paste this code into a new virtual server e.g. eduroam-radsec and place into your SRADDB/sites-enabled directory

listen {
i paddr = *
port = 2083
type = auth

For now, only TCP transport is allowed.
proto = tcp

clients = radsec

This is *exactly* the same configuration as used by the EAP-TLS
nmodule. It's OK for testing, but for production use it's a good
idea to use different server certificates for EAP and for RADI US
transport.

I's {

~ o H R R

These are used to sinplify later configurations.
certdir = ${confdir}/radsec
cadir = ${confdir}/radsec

private_key_password = whatever
private_key file = ${certdir}/server.real mtld-key. pem

If Private key & Certificate are located in
the same file, then private_key file &
certificate file nust contain the sanme file
name.

If CAfile (below) is not used, then the
certificate_file bel ow MUST include not

only the server certificate, but ALSO all

of the CA certificates used to sign the

server certificate.

certificate_file = ${certdir}/server.real mtld-eduPKl.pem

HOHH R H R H R

Trusted Root CA Ii st

ALL of the CA's in this list will be trusted
to issue client certificates for authentication.

I'n general, you should use self-signed
certificates for 802.1x (EAP) authentication.
In that case, this CA file should contain
one CA certificate.

This paraneter is used only for EAP-TLS,

when you issue client certificates. If you do
not use client certificates, and you do not want
to permt EAP-TLS authentication, then delete
this configuration item

CA file = ${cadir}/eduPKl-CA crt

HOHH R H H R HHHHHHHHR

For DH ci pher suites to work, you have to
run OpenSSL to create the DH file first:

openssl dhparam -out certs/dh 1024

HOHOH R R

HoH O HH O H R HEHHH R

H o HH H O HH O HHHEHHHHEHHH

d
r

T oH R H OH R H W

I - S R L

HOHH R H R R

#
#
¢

h_file = ${certdir}/dh
andom file = ${certdir}/random

This can never exceed the size of a RADI US
packet (4096 bytes), and is preferably half
that, to acconodate other attributes in
RADI US packet. On nost APs the MAX packet
length is configured between 1500 - 1600
In these cases, fragment size should be
1024 or |ess.

ragnment _size = 1024

include_length is a flag which is
by default set to yes If set to
yes, Total Length of the nmessage is
included in EVERY packet we send.
If set to no, Total Length of the
message is included ONLY in the
First packet of a fragnent series.

ncl ude_l ength = yes

Check the Certificate Revocation List

1) Copy CA certificates and CRLs to sanme directory.

2) Execute 'c_rehash <CA certs&CRLs Directory>'.
'c_rehash' is QpenSSL's conmmand.
3) uncomment the line bel ow
5) Restart radiusd
check_crl = yes
CA_path = ${cadir}

If check_cert _issuer is set, the value will
be checked agai nst the DN of the issuer in
the client certificate. |If the values do not
match, the cerficate verification will fail,
rejecting the user.

In 2.1.10 and later, this check can be done
nmore general ly by checking the value of the
TLS-dient-Cert-lssuer attribute. This check
can be done via any nechani smyou choose.

this doesnt work yet
check_cert_i ssuer = "/ DC=or g/ DC=edupki / CN=eduPKI "

If check_cert_cn is set, the value wll

be xlat'ed and checked agai nst the CN
inthe client certificate. |If the values
do not match, the certificate verification
will fail rejecting the user.

This check is done only if the previous
"check_cert_issuer” is not set, or if
the check succeeds.

In 2.1.10 and later, this check can be done
nmore general ly by checking the value of the
TLS-dient-Cert-CN attribute. This check
can be done via any nechani smyou choose.

check_cert_cn = % User - Nane}

Set this option to specify the all owed
TLS ci pher suites. The format is listed
in "man 1 ciphers".

i pher _list = "DEFAULT"

H*

This configuration entry should be del eted

once the server is running in a nornal

configuration. It is here ONLY to neke

initial deploynments easier.

#

#

This is enabled in eap.conf, so we don't need it here.
#

meke_cert_command = "${certdir}/bootstrap"

Session resunption / fast reauthentication
cache.

The cache contains the followi ng information:

session |Id - unique identifier, nmanaged by SSL
User-Nane - fromthe Access-Accept
Stripped-User-Nane - fromthe Access-Request
Cached- Session-Policy - fromthe Access-Accept

The "Cached- Session-Policy" is the name of a
policy which should be applied to the cached
session. This policy can be used to assign
VLANs, | P addresses, etc. |t serves as a useful
way to re-apply the policy fromthe original
Access- Accept to the subsequent Access-Accept
for the cached session.

On session resunption, these attributes are
copied fromthe cache, and placed into the
reply list.

You probably al so want "use_tunneled_reply = yes"
when using fast session resunption.

HOH R HEHHHHHHHHHHHHH R

cache
Enable it. The default is "no".
Del eting the entire "cache" subsection
Al so di sabl es cachi ng.

{

#

#

#

#

#

You can disallow resunption for a

particular user by adding the follow ng
attribute to the control itemlist:
#

#
#

#

#
#

#

Al | ow Sessi on- Resunpti on = No

If "enable = no" bel ow, you CANNOT
enabl e resunption for just one user
by setting the above attribute to "yes".

enabl e = yes

#

Lifetine of the cached entries, in hours.
The sessions will be deleted after this
tinme.

#

lifetine = 24 # hours

The maxi mum nunber of entries in the
cache. Set to "0" for "infinite".

This could be set to the nunber of users
who are |logged in... which can be a LOT.

H o O R H H R

max_entries = 255

-

Require a client certificate

- o B R

equire_client_cert = yes

As of version 2.1.10, client certificates can be
val i dated via an external conmand. This allows
dynamic CRLs or OCSP to be used

This configuration is comrented out in the
default configuration. Uncomment it, and configure
the correct paths below to enable it

HOHOHF R HH R R

verify {

A tenmporary directory where the client
certificates are stored. This directory
MJUST be owned by the U D of the server,
and MUST not be accessible by any other
users. Wen the server starts, it will do
"chnod go-rwx" on the directory, for
security reasons. The directory MJST
exi st when the server starts

You should also delete all of the files
in the directory when the server starts
tnpdir = /etc/raddb/tenporary

H o O HHHH R HH

The command used to verify the client cert.
We recommend using the OpenSSL command- 1| i ne
t ool

The ${..CA path} text is a reference to
the CA _path variable defined above

The Y TLS-Cient-Cert-Filenane} is the nane
of the tenporary file containing the cert
in PEMformat. This file is automatically
del eted by the server when the command
returns

HOHH H HHHHHHHH

this doesnt work yet either

#client = "/usr/bin/openssl verify -CAfile /etc/raddb/radsec/eduPKl-CA crt

crlsign %4 TLS-dient-Cert-Filenane}"

}

1 Pv6 |istener

listen {

i pv6addr

}

- config coments cleared for brevity

port = 2083
type = auth

proto =
clients

tls {

tcp
= radsec

certdir = ${confdir}/radsec

cadir = ${confdir}/radsec

private_key_password = whatever

private_key file = ${certdir}/server.realmtld-key. pem
certificate_file = ${certdir}/server.real mtld-eduPKl.pem
CA file = ${cadir}/eduPKI-CA crt

dh_file = ${certdir}/dh

randomfile = ${certdir}/random

fragment _size = 1024

include_length = yes

- pur pose

this doesnt work yet
check_cert _i ssuer = "/ DC=or g/ DC=edupki / CN=eduPKI "

ci pher _Iist = "DEFAULT"
cache {
enabl e = yes
max_entries = 255

}
require_client_cert = yes
verify {

tnpdir = /etc/raddb/tenporary
doesnt work yet
#client = "/usr/bin/openssl verify -CAfile /etc/raddb/radsec/eduPKl-CA. crt -purpose
crisign %TLS-Cient-Cert-Filenanme}"
}

}

clients radsec {
client 127.0.0.1 {
i paddr = 127.0.0.1
proto = tcp
secret = testingl23
}
client etlrl. eduroamorg {
i paddr = 192.87. 106. 34
proto = tcp
secret = radsec
}
client etlr2. eduroamorg {
i paddr = 130. 225.242. 109
proto = tcp
secret = radsec
IPv6 for ETRL too - unfamiliar with details, so comented out

client etlrl-v6.eduroamorg {
ipvﬁaddr = 2?2?2227 2?2?2?2?2?2?2?27??27?7

proto = tcp
secret = radsec
}

client etlr2-v6.eduroamorg {
i pvbaddr = 22222222222222222222222222272?

proto = tcp
secret = radsec

H O HF R HH R HHHH

—~

local test listener for debug (present by default)

listen {
i paddr = 127.0.0.1
port = 4000
type = auth

}

home_server etlrl {
i paddr etlr1. eduroamorg

port = 2083
type = auth
secret = radsec
proto = tcp

status_check = status-server

tls {
#
These are used to sinplify later configurations
#
certdir = ${confdir}/radsec
cadir = ${confdir}/radsec

private_key_password = whatever

private_key file = ${certdir}/server.realmtld-key. pem

If Private key & Certificate are |located in
the sane file, then private_key file &
certificate_file nust contain the same file
nare.

If CAfile (below) is not used, then the
certificate_file bel ow MIUST include not

only the server certificate, but ALSO all

of the CA certificates used to sign the

server certificate.

certificate_file = ${certdir}/server.real mtld-eduPKl.pem

HOH OH R H HHHH W

Trusted Root CA Ii st

ALL of the CA's in this list will be trusted
to issue client certificates for authentication.

In general, you should use self-signed
certificates for 802.1x (EAP) authentication.
In that case, this CA file should contain
one CA certificate.

This paraneter is used only for EAP-TLS,

when you issue client certificates. |If you do
not use client certificates, and you do not want
to permt EAP-TLS authentication, then delete
this configuration item

file = ${cadir}/eduPKl-CA crt

g###############

For DH ci pher suites to work, you have to
run QpenSSL to create the DHfile first:

H OB H R R

openssl dhparam -out certs/dh 1024

H

dh_file = ${certdir}/dh
random file = ${certdir}/random

This can never exceed the size of a RADI US
packet (4096 bytes), and is preferably half
that, to acconodate other attributes in
RADI US packet. On nost APs the MAX packet
length is configured between 1500 - 1600
In these cases, fragment size should be
1024 or |ess.

T H R O H W R W

ragment _size = 1024

include_length is a flag which is
by default set to yes If set to
yes, Total Length of the nessage is
included in EVERY packet we send.
If set to no, Total Length of the
nmessage i s included ONLY in the
First packet of a fragnent series.

HOH H HH R R H

ncl ude_l ength = yes
Check the Certificate Revocation List

1) Copy CA certificates and CRLs to sanme directory.
2) Execute 'c_rehash <CA certs&CRLs Directory>'.
'c_rehash' is QpenSSL's conmmand.
3) uncomment the line bel ow
5) Restart radiusd
check_crl = yes
CA path = ${cadir}

HOH OH R H HH

If check_cert_issuer is set, the value will
be checked agai nst the DN of the issuer in
the client certificate. |If the values do not
match, the cerficate verification will fail
rejecting the user

In 2.1.10 and later, this check can be done
nore general ly by checking the value of the
TLS-Client-Cert-lssuer attribute. This check
can be done via any mechani smyou choose

HoH OHOH H W H BB HH

check_cert_i ssuer = "/ C=GB/ ST=Ber kshi r e/ L=Newbury/ O=My Conpany Ltd"
#
|f check_cert_cn is set, the value will
be xlat'ed and checked agai nst the CN
in the client certificate. |f the values
do not match, the certificate verification
wll fail rejecting the user
#
This check is done only if the previous
"check_cert_issuer" is not set, or if
the check succeeds.
#
In 2.1.10 and later, this check can be done
nore generally by checking the value of the
TLS-Client-Cert-CN attribute. This check
can be done via any nechani smyou choose
#
check_cert_cn = % User - Nane}
#
Set this option to specify the allowed
TLS cipher suites. The format is listed
#in "man 1 ciphers".
ci pher_list = "DEFAULT"
}

}
#second hone server config cleared to the values required for brevity

hone_server etlr2 {
i paddr etlr2.eduroamorg

port = 2083
type = auth
secret = radsec
proto = tcp

st atus_check = status-server

tls {
certdir = ${confdir}/radsec
cadir = ${confdir}/radsec
private_key_password = whatever
private_key file = ${certdir}/server.real mtld-key. pem
certificate_file = ${certdir}/server.real mtld-eduPKl.pem
CA file = ${cadir}/eduPKl-CA crt
dh_file = ${certdir}/dh
randomfile = ${certdir}/random
fragment _size = 1024
include_length = yes
ci pher_list = "DEFAULT"
}

hone_server_pool ETLR {
type = | oad- bal ance
hone_server = etlrl
home_server = etlr2

}

real m edur oam {
aut h_pool = ETLR

}

Caveats
Currently (10th June 2011) there are some bugs with handling unreachable remote proxies which causes the daemon to die. A few of these have already
been dealt with via bug reports but some still lurk. Also, the certificate checking/verification code does not currently work - we hope to be able to verify the

certificate issuer and OID as we do with RADIATOR and RadSecProxy. Note that this software only does RADSEC/TLS with TCP - DTLS over UDP is not
yet an option. Clients are 'radsec’ only and the standard naslist or naslist imported from SQL won't operate with radsec.

Gauging your federation's performance

Monitoring

It is important to constantly monitor your infrastructure on all levels, in order to react to system failure and see upcoming problems. There is a multitude of
monitoring solutions on the market, and it is not possible to describe ways to monitor eduroam infrastructure for all of them; but we have provided a
selection below.

First, for Europe, some parts of monitoring are done by the eduroam Operation Team which we will describe in the following section; please contact your
own regional operator for the corresponding monitoring solution in your area if you are operating outside Europe.

In the then-following sections, we provide general tips for infrastructure monitoring.

Federation monitoring in Europe: the eduroam Operational Team

When you set up a federation-level RADIUS server, the OT will start monitoring your server availability and will send out email alerts in case of failure. This
is done by the OT sending authentication requests for the special realm @eduroam.<TLD> from their monitoring server to your server, and your server is
expected to mirror these back to the OT monitoring infrastructure. The technical set-up of this is described in the corresponding configuration guidelines for
federation-level RADIUS servers.

Server availablitity is tested every hour and the results are summarised on the following web page: http://monitor.eduroam.org/

Note that you can also get more detailed info, including a history, by navigating on the left-hand pane on that website.

There is also a more detailed diagnosis test, where a federation operator can request that a specific path (i.e. from federation A via the European root to

federation B) is tested real-time on-demand. The web interface for this testing facility is online at: http://monitor.eduroam.org/inter/test_otm.php (access is
restricted to eduroam federation operators only).

Monitoring inside the federation
There are several dimensions to infrastructure monitoring; most of which are unrelated to eduroam: system utilisation, hardware health, network
reachability, a.s.o0. There are many market solutions to monitor these aspects. It is beneficial to use a monitoring solution which can use plugins to execute

some more eduroam-specific monitoring. Nagios and its fork Icinga have proven to be valuable to many eduroam participants, and the following plugins
are considered useful.

Nagios/Icinga: EAP Login checks

Preparatory work

The tool "rad_eap_test", which is a frontend to wpa_supplicant's "eapol_test", can be used for scripted authentication checks in Nagios. The added value
over eapol_test is that eapol_test requires a configuration file on disk by the time of execution. rad_eap_test is completely command-line driven; it
generates a temporary configuration file and deletes it again after eapol_test execution.

You can download rad_eap_test from here: http://www.eduroam.cz/rad_eap_test/

It requires eapol_test, part of wpa_supplicant from here: http:/hostap.epitest.fi/

To compile eapol_test, unpack the wpa_supplicant distribution, change into the wpa_supplicant/ subdirectory and create the default config file by executing

cp defconfig .config

Then, enable compilation of eapol_test by editing the .config file and setting (i.e. uncommenting)

http://monitor.eduroam.org/
http://monitor.eduroam.org/inter/test_otm.php
http://www.eduroam.cz/rad_eap_test/
http://hostap.epitest.fi/

CONFI G_EAPOL_TEST=y

You can then compile eapol_test with

make eapol _test

Now, you need to tell the shell script rad_eap_test where to find the eapol_test executable; and tell the eduroam F-Ticks system that these are monitoring-
only requests by setting a corresponding MAC address. Edit the rad_eap_test file and replace the lines

EAPOL_PROG=<your path to eapol _test here>
MAC="22: 44: 66: xx:yy: zz" (replace x,y,z with arbitrary values to your |iking)

That's it for the prerequisites - we can now start defining Nagios/Icinga checks.

Implementing the checks

You would typically execute the Nagios checks by defining your Nagios server as a client to your FLR server, and send requests for known test accounts
of your realms to that server.

You can define check commands like the following:

defi ne command{

conmmand_name check_eduroam | ogi n

comand_| i ne $USER1$/ rad_eap_test -H <your FLR hostname> -P 1812 -S <shared secret for your Nagi os
client> -A $ARGL$ -u $ARRS$ -p $ARG3$ -e $ARAS -m WPA-EAP -t 7
}

}

and later use the arguments as follows in your individual checks:

ARG1 = anonymous outer identity
ARG2 = inner username

ARG3 = password

ARG4 = EAP type (TTLS/PEAP)

You can also define similar checks for other EAP types; simply execute rad_eap_test without arguments to see which parameters it supports.

Example: You want to test a participating realm foobar.aq which uses PEAP, and for which you have the test credentials "testuser" and "testpass”, and
you want to test whether anonymous outer identities work properly. The corresponding service check is:

define service{

use generic-service

host _name <your FLR server>

servi ce_description EDUROAM_FOOBAR

cont act _groups e

check_conmand check_eduroam | ogi n! @ oobar. aq! t est user @ oobar . aq! t est pass! PEAP
}

Nagios/Icinga: RADIUS/TLS certificate validity checks

You can use the commodity Nagios plugin "check_ssl_cert" from: https://trac.id.ethz.ch/projects/nagios_plugins/wiki/check_ssl_cert for this purpose.
The check command is then:

define command {
comand_nane = radius_tls
command_| i ne = $USER1$/ check_ssl _cert --host $HOSTADDRESS$ --port 2083 --noauth --warning 14 --critical

and will warn you two weeks in advance that your certificate is about to expire when added to the host as a service check.

Statistics

http://foobar.aq
https://trac.id.ethz.ch/projects/nagios_plugins/wiki/check_ssl_cert for

It is also important to measure how successful the service is in your area of responsibility. eduroam Operations has set up a statistics system called F-
Ticks, which is able to capture all roaming events both on a national as well as an international level. It does not cover local campus usage though.

If your FLR server is configured to support F-Ticks (it is, if configured according to this cookbook), statistics will be generated automatically for that
federation. They are accessible at the following website: http://monitor.eduroam.org/f-ticks/

On that web page, you can find historical evolution of roaming service usage in federations, as well as an overview which realms were most active, and
from which countries visitors come from. In the future, detailed views per SP and per IdP can be made available if your federation opts to send the data in
the extended detail level. Please contact your federation operator to find out which level of statistics your federation provides.

http://monitor.eduroam.org/f-ticks/

	How to deploy eduroam at national level (ADVANCED)

