
Software tests
Software tests

TESTS TYPE Organization

Security System intrusion PSNC

Hacking  

Data privacy  

Compatibility Back-end API CESCA, GRNET, RNP

WebDAV clients  

OS / Browser  

Mobile platforms  

Performance Load PSNC, CESNET

Volume PSNC, CESNET

Stress PSNC, CESNET

Acceptance Long distance latency AARnet

  User Interface - Webdrive SWITCH, Uni.Porto

Basic performance tests by CESNET

Multi-VM setup: 2 nodes running patched Voldemort instances forming a Voldemort cluster, 1 node actually running the application and 1 node used as a 
webdav client for testing.

: Storage for the data was provided by NFS share mounted on application node. The NFS server was running on another, separate node. 
 
All these VMs resided on single physical host (12x Intel Xeon X5650 @2.666 GHz, 48GB RAM, SGI disk array used as datastore for VMs, connected 

 through iSCSI to hosts) running VMware ESXi 5.0.0. The VMs (Ubuntu 12.04 LTS with latest updates) were configured with 1 vCPU, 1024MB RAM and 
15GB disk storage, connected to vSwitch with 1Gbit virtual NICs. All the traffic between the VMs was therefore going only through the host, with 
acceptable speeds.

cloud@clouddriveTest:~$ time iperf -c clouddriveapp1.du1.cesnet.cz -i 1 -n 1G
------------------------------------------------------------
Client connecting to clouddriveapp1.du1.cesnet.cz, TCP port 5001
TCP window size: 23.5 KByte (default)
------------------------------------------------------------
[  3] local 195.113.231.237 port 48934 connected with 195.113.231.236 port 5001
[ ID] Interval       Transfer     Bandwidth
[  3]  0.0- 1.0 sec   384 MBytes  3.22 Gbits/sec
[  3]  1.0- 2.0 sec   574 MBytes  4.81 Gbits/sec
[  3]  0.0- 2.1 sec  1.00 GBytes  4.06 Gbits/sec
 
real 0m2.144s 
user 0m0.016s 
sys 0m0.604s    

These files were uploaded directly to the CloudDrive application using cadaver WebDAV client. 
Side note: You can “script” cadaver, you have to supply the credentials using ~/.netrc file (more info: http://www.mavetju.org/unix/netrc.php) and create a 
file listing commands you would otherwise type into cadaver’s interactive CLI (--rcfile parameter, more: man cadaver). 
The output of the uploads looks like this:

cloud@c  time cadaver --rcfile=cadaverScript.txt http://clouddriveapp1.du1.cesnet.cz:9090/test/
Uploading testfile to `/test/testfile':
Progress: [=============================>] 100.0% of 104857600 bytes succeeded.
Connection to `clouddriveapp1.du1.cesnet.cz' closed.
 
real 0m13.859s 
user 0m0.008s 
sys 0m0.116s 
 

http://www.mavetju.org/unix/netrc.php
http://clouddriveapp1.du1.cesnet.cz:9090/test/


cloud@clouddriveTest:~/test$ time cadaver --rcfile=cadaverScript.txt http://clouddriveapp1.du1.cesnet.cz:9090/test/
Uploading testfile1G to `/test/testfile1G':
Progress: [=============================>] 100.0% of 1048576000 bytes succeeded.
Connection to `clouddriveapp1.du1.cesnet.cz' closed.
 
real 2m18.505s 
user 0m0.128s 
sys 0m1.340s 

As you can see, the application processes the upload at around 7.2Mbytes/s speed. Important thing to note : the application is CPU-bound and 
during the tests used 99% of available CPU time on the VM.
 
You can see the system statistics(cpu, i/o, mem, interrupts, context switches and more) captured during the 1GB file upload in the  attached dstat.xlsx file
(this is cleaned-up csv file generated by dstat).
 
In an effort to understand why the processing speed is only around 7.2 Mbytes/s I dug deeper. I ran a Java profiler (the CloudDrive application is written in 
Scala, but it compiles into Java bytecode and is run in the JVM) VisualVM on the running application during the processing/upload of 1GB file.
 
First things first. Java installed on the application node was openjdk-7-jre. For profiling I ran the application in JVM with these parameters, to enable JMX 
connections for profiling (more: http://stackoverflow.com/questions/10591463/why-wont-the-visualvm-profiler-profile-my-scala-console-application?rq=1):
    

java -Xmx512M

-Xss2M -XX:+CMSClassUnloadingEnabled

-Dcom.sun.management.jmxremote=true

-Dcom.sun.management.jmxremote.port=20000

-Dcom.sun.management.jmxremote.ssl=false

-Dcom.sun.management.jmxremote.authenticate=false -jar

./sbt-launcher.jar run
 
 

For profiling I installed VisualVM 1.3.2 and followed this tutorial (http://www.codefactorycr.com/java-visualvm-to-profile-a-remote-server.html) + added JMX 
connection. From there I captured the metrics for CPU during the processing.  is attached. Profiler output in XML format
 
Also the images of CPU hotspot methods and the Compression class subtree from the profiler are attached. As you can see in the hotspot image, most of 
the time is spent in compress() method and ++ equals 1.apply (Scala operator method?). In the subtree image you can see these two methods expanded 
with a part of their call trees.

http://clouddriveapp1.du1.cesnet.cz:9090/test/
https://wiki.geant.org/download/attachments/33685508/dstat.xlsx?version=1&modificationDate=1359984741764&api=v2
http://stackoverflow.com/questions/10591463/why-wont-the-visualvm-profiler-profile-my-scala-console-application?rq=1
http://www.codefactorycr.com/java-visualvm-to-profile-a-remote-server.html
https://wiki.geant.org/download/attachments/33685508/profiling.xml?version=1&modificationDate=1359984753703&api=v2




 
My knowledge of Scala is pretty limited (I am fairly comfortable with Java, but I have no experience with Scala specifics) but from what I could deduce, the 
hotspots are in “>|” method definition in https://github.com/VirtualCloudDrive/CloudDrive/blob/master/src/clouddrive/src/main/scala/pipes/Compression.
scala , which takes care of compressing the data with gzip algorithm. For comparison, when I tried to compress the same files used for application testing, 
it took less time (obviously, the application has to do encryption on the data and many other tasks):
 

 root@clouddriveApp1:~# time gzip -c testfile > compfile
 
real 0m4.751s 
user 0m4.136s 
sys 0m0.120s 
 

root@clouddriveApp1:~# time gzip -c testfile1G > compfile1G
 
real 0m59.194s 
user 0m41.927s 
sys 0m1.332s 
    

Well that’s all for now, I hope these findings are useful.

Comments by Maarten:

 Excellent and as per my findings. Note that the application scales horizontally per vCPU and across multiple WebDAV servers. ~60Mbit for application 
level encryption and compression on one vCPU is not too bad - on a quad core you can probably triple that. Also, if storage space is cheap, just turn off 
compression. To really test and see the difference, turn off encryption as well. It should multiply by a factor 4-8.

I'm also happy that you can run these uploas with this amount of memory: the I/O and buffering all works and gets flushed as it should. The methods you 
mention >| are essentially "pipe methods" in every functional class (compression, encryption, metering ,….) so it's logical that they show the performance 
hit: these are the one doing the work.

Bug reports/Feature requests

In addition to the ones on Github https://github.com/VirtualCloudDrive/CloudDrive/issues

ID Organisation Bug/Feature

https://github.com/VirtualCloudDrive/CloudDrive/blob/master/src/clouddrive/src/main/scala/pipes/Compression.scala
https://github.com/VirtualCloudDrive/CloudDrive/blob/master/src/clouddrive/src/main/scala/pipes/Compression.scala
https://github.com/VirtualCloudDrive/CloudDrive/issues


1 CESCA Searches are key sensitive (key insensitive maybe more interesting) 

2 CESCA Searches should include filenames (including directories)

3 CESCA If you copy a tagged file, the tags are not being propagated to the copy. And that would be nice.

4 FCCN Webdrive - I find it confusing to have the same icon for adding a directory and to upload a file

5 FCCN Webdrive - directory navigation - it would be nice to show where we are at  directory tree.

6 FCCN Webdrive  - an upload progress bar would be nice, although I guess for large files one could use the webdav client

7 FCCN For the production version I suggest that the applications ensures strong passwords, and to well warn the user that it doesn't 
need to be the same password as the regular password that belongs to the login that is being reused. I guess it's not so easy 
to test that they are different passwords

8 Uni. Porto To provide Name or ID of logged user on pages

9 CESCA Jclouds API on the back-end

10 RNP OpenStack Swift S3 API support on the back-end

11 HEAnet Administrative web interface for sysadmin

12 CESCA No federated problems, but my account says I'm using  -199.522 MB of 10 GB (0 %). And there is actually nothing.

13 Scre Do encryption in blocks, not the entire file at once.


	Software tests

